Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structures and shape-memory behaviour of NiTi

Abstract

Shape-memory alloys (SMAs) are a unique class of metal alloys that after a large deformation can, on heating, recover their original shape1. In the many practical applications of SMAs, the most commonly used material is NiTi (nitinol). A full atomic-level understanding of the shape-memory effect in NiTi is still lacking, a problem particularly relevant to ongoing work on scaling down shape-memory devices for use in micro-electromechanical systems. Here we present a first-principles density functional study of the structural energetics of NiTi. Surprisingly, we find that the reported B19′ structure2,3,4 of NiTi is unstable relative to a base-centred orthorhombic structure that cannot store shape memory at the atomic level. However, the reported structure is stabilized by a wide range of applied or residual internal stresses. We propose that the memory is stored primarily at the micro-structural level: this eliminates the need for two separate mechanisms in describing the two-way shape-memory effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Martensitic distortions of the B2 crystal structure of NiTi.
Figure 2: Total energies and internal parameters with respect to monoclinic angle γ.
Figure 3: B19′ band structure along AΓYCΓB for different monoclinic angles, calculated using LDA-USPP.

Similar content being viewed by others

References

  1. Science and technology of shape-memory alloys: new developments. Mater. Res. Bull. 27, (2002).

  2. Kudoh, Y., Tokonami, M., Miyazaki, S. & Otsuka, K. Crystal structure of the martensite in Ti-49.2 at%Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall. Mater. 33, 2049–2056 (1985).

    Article  CAS  Google Scholar 

  3. Michal, G.M. & Sinclair, R. The structure of TiNi martensite. Acta Crystallogr. B 37, 1803–1807 (1981).

    Article  Google Scholar 

  4. Bührer, W., Gotthardt, R., Kulik, A., Mercier, O. & Staub, F. Powder neutron diffraction study of nickel-titanium martensite. J. Phys. F 13, L77–L81 (1983).

    Article  Google Scholar 

  5. Marcinkowski, M.J., Sastri, A.S. & Koskimaki, D. Martensitic behaviour in the equi-atomic Ni-Ti alloy. Phil. Mag. 18, 945–958 (1968).

    Article  CAS  Google Scholar 

  6. Golestaneh, A.A. & Carpenter, J.M. Study of the martensitic transformation in shape-memory nitinol alloy by time-of-flight neutron diffraction techniques. Acta Metall. Mater. 38, 1291–1305 (1990).

    Article  CAS  Google Scholar 

  7. Wang, F.E., Pickart, S. & Alperin, H.A. Mechanism of the TiNi martensitic transformation and the crystal structures of TiNi-II and TiNi-III phases. J. Appl. Phys. 42, 97–112 (1972).

    Article  Google Scholar 

  8. Ye, Y.Y., Chan, C.T. & Ho, K.M. Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt. Phys. Rev. B 56, 3678–3689 (1997).

    Article  CAS  Google Scholar 

  9. Parlinski, K. & Parlinska-Wojtan, M. Lattice dynamics of NiTi austenite, martensite and R-phase. Phys. Rev. B 66, 064307 (2002).

    Article  Google Scholar 

  10. Huang, X., Bungaro, C., Godlevsky, V. & Rabe, K.M. Lattice instabilities of cubic NiTi from first principles. Phys. Rev. B 65, 014108 (2002).

    Article  Google Scholar 

  11. Huang, X., Rabe, K.M. & Ackland, G.J. First-principles study of the structural energetics of PdTi and PtTi. Phys. Rev. B 67, 024101 (2003).

    Article  Google Scholar 

  12. Hara, T., Ohba, T., Okunishi, E. & Otsuka, K. Structural study of R-phase in Ti-50.23 at.%Ni and Ti-47.75 at.%-1.50 at.%Fe alloys. Mater. Trans. JIM 38, 11–17 (1997).

    Article  CAS  Google Scholar 

  13. Lifshitz, I.M., Azbel M. Ya. & Kaganov, M.I. Electron Theory of Metals (Consultants Bureau, New York, 1973).

    Google Scholar 

  14. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, R558–R561 (1993).

    Article  Google Scholar 

  15. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  16. Perdew, J.P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  17. Perdew, J.P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  18. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  19. Methfessel, M. & Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  20. Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  21. Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

    Article  Google Scholar 

  22. Troullier, N. & Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  23. Blaha, P., Schwarz, K., Sorantin, P. & Trickey, S.B. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990).

    Article  CAS  Google Scholar 

  24. Goo, E. & Sinclair, R. The B2 to R transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys. Acta Metall. 33, 1717–1723 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. D. James, K. Bhattacharya and I. I. Naumov for valuable discussions. This work was supported by AFOSR/MURI F49620-98-1-0433. The calculations were performed on the SGI Origin 3000 and IBM SP3 at ARL MSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme J. Ackland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Ackland, G. & Rabe, K. Crystal structures and shape-memory behaviour of NiTi. Nature Mater 2, 307–311 (2003). https://doi.org/10.1038/nmat884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing