Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number

Abstract

Members of the neuroligin family of cell-adhesion proteins are found at excitatory and inhibitory synapses and are mutated in some familial forms of autism spectrum disorders. Although they display synaptogenic properties in heterologous systems, the function of neuroligins in vivo in the regulation of synapse formation and synapse number has been difficult to establish. We found that neuroligin-1 (NL1), which is located at excitatory postsynaptic densities, regulates activity-dependent synaptogenesis and mature synapse number on cortical layer 2/3 pyramidal neurons in vivo. However, synapse number was not sensitive to absolute NL1 levels but instead depended on transcellular differences in the relative amounts of NL1. These effects were independent of the cell-autonomous regulation of NMDA-type glutamate receptors by absolute levels of NL1. Our data indicate that transcellular competitive processes govern synapse formation and number in developing cortex and that NL1 has a central function in these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sparse knockdown of NL1, but not global knockout, reduces synapse number and spine density in cortical layer 2/3 pyramidal neurons.
Figure 2: NL1 modulates NMDAR-mediated currents and Ca2+ signaling at individual postsynaptic terminals.
Figure 3: Constitutive NL1 knockout lowers NMDAR uEPSCs and Ca2+ transients.
Figure 4: NL1 regulates activity-dependent spinogenesis.
Figure 5: Spine density of Nlgn1−/− neurons in vitro is affected by presence of neighboring Nlgn1+/+ neurons.
Figure 6: Variable Nlgn1 mRNA in across cortical neurons.
Figure 7: Relative levels of NL1 determine spine number in vivo via intercellular interactions.

Similar content being viewed by others

References

  1. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  2. Sanes, J.R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    CAS  PubMed  Google Scholar 

  3. Huberman, A.D., Feller, M.B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Moody, W.J. & Bosma, M.M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev. 85, 883–941 (2005).

    CAS  PubMed  Google Scholar 

  5. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  6. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hubener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    CAS  PubMed  Google Scholar 

  7. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  8. Alvarez, V.A. & Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    CAS  PubMed  Google Scholar 

  9. Dalva, M.B., McClelland, A.C. & Kayser, M.S. Cell adhesion molecules: signaling functions at the synapse. Nat. Rev. Neurosci. 8, 206–220 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003).

    CAS  PubMed  Google Scholar 

  11. Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    CAS  PubMed  Google Scholar 

  13. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    CAS  PubMed  Google Scholar 

  14. Song, J.Y., Ichtchenko, K., Sudhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Varoqueaux, F. et al. Neuroligins determine synapse maturation and function. Neuron 51, 741–754 (2006).

    CAS  PubMed  Google Scholar 

  16. Ichtchenko, K. et al. Neuroligin 1: a splice site–specific ligand for beta-neurexins. Cell 81, 435–443 (1995).

    CAS  PubMed  Google Scholar 

  17. Ichtchenko, K., Nguyen, T. & Sudhof, T.C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682 (1996).

    CAS  PubMed  Google Scholar 

  18. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 105, 1710–1715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chubykin, A.A. et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54, 919–931 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulopoulos, A. et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63, 628–642 (2009).

    CAS  PubMed  Google Scholar 

  21. Durand, C.M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    CAS  PubMed  Google Scholar 

  22. Feng, J. et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci. Lett. 409, 10–13 (2006).

    CAS  PubMed  Google Scholar 

  23. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blundell, J. et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci. 30, 2115–2129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, J. et al. Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc. Natl. Acad. Sci. USA 105, 9087–9092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Soler-Llavina, G.J., Fuccillo, M.V., Ko, J., Sudhof, T.C. & Malenka, R.C. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc. Natl. Acad. Sci. USA 108, 16502–16509 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in non-neuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  PubMed  Google Scholar 

  28. Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P. & Sudhof, T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48, 229–236 (2005).

    CAS  PubMed  Google Scholar 

  29. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    CAS  PubMed  Google Scholar 

  30. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levinson, J.N. & El-Husseini, A. Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 48, 171–174 (2005).

    CAS  PubMed  Google Scholar 

  33. Nam, C.I. & Chen, L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 6137–6142 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Prange, O., Wong, T.P., Gerrow, K., Wang, Y.T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl. Acad. Sci. USA 101, 13915–13920 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon, H.B. & Sabatini, B.L. Glutamate induces de novo growth of functional spines in developing cortex. Nature 474, 100–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bloodgood, B.L. & Sabatini, B.L. Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    CAS  PubMed  Google Scholar 

  37. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    CAS  PubMed  Google Scholar 

  38. Barrow, S.L. et al. Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Dev. 4, 17 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Jung, S.Y. et al. Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proc. Natl. Acad. Sci. USA 107, 4710–4715 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Buffelli, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424, 430–434 (2003).

    CAS  PubMed  Google Scholar 

  41. McClelland, A.C., Hruska, M., Coenen, A.J., Henkemeyer, M. & Dalva, M.B. Trans-synaptic EphB2–ephrin-B3 interaction regulates excitatory synapse density by inhibition of postsynaptic MAPK signaling. Proc. Natl. Acad. Sci. USA 107, 8830–8835 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chubykin, A.A. et al. Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J. Biol. Chem. 280, 22365–22374 (2005).

    CAS  PubMed  Google Scholar 

  43. Alvarez, V.A., Ridenour, D.A. & Sabatini, B.L. Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J. Neurosci. 26, 7820–7825 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Wit, J. et al. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64, 799–806 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ko, J., Fuccillo, M.V., Malenka, R.C. & Sudhof, T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64, 791–798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Santamaria, F., Wils, S., De Schutter, E. & Augustine, G.J. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    CAS  PubMed  Google Scholar 

  48. Zhong, H. et al. Subcellular dynamics of type II PKA in neurons. Neuron 62, 363–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dresbach, T., Neeb, A., Meyer, G., Gundelfinger, E.D. & Brose, N. Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding. Mol. Cell. Neurosci. 27, 227–235 (2004).

    CAS  PubMed  Google Scholar 

  50. Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J. & Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734 (2005).

    CAS  PubMed  Google Scholar 

  51. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    CAS  PubMed  Google Scholar 

  52. Kozorovitskiy, Y., Saunders, A., Johnson, C.A., Lowell, B.B. & Sabatini, B.L. Recurrent network activity drives striatal synaptogenesis. Nature 485, 646–650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sturgill, J.F., Steiner, P., Czervionke, B.L. & Sabatini, B.L. Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J. Neurosci. 29, 12845–12854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Sabatini laboratory for their constructive comments on the manuscript. We also thank A. Giessel, J.F. Sturgill and B. Bloodgood for helping us with data analysis. We are grateful to F. Varoqueaux and N. Brose (Max Planck Institute for Experimental Medicine) for providing mouse NL1 expression vector and Nlgn1+/− mice. This work was supported by US National Institutes of Health grant R01NS064583 (to C.G.), a Leonard and Isabelle Goldenson Research Fellowship (to Y.K.) and a SFARI grant from the Simons Foundation (to B.L.S.).

Author information

Authors and Affiliations

Authors

Contributions

H.-B.K. and B.L.S. conceived the study. H.-B.K. performed experiments and data analysis. N.A. and J.L.S. performed western blot analysis and cell culture and provided technical assistance. W.-J.O. and C.G. designed and performed the experiments shown in Figure 6. Y.K. performed and designed the experiments shown in Figure 7e–g with design assistance from R.T.P.

Corresponding author

Correspondence to Bernardo L Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, HB., Kozorovitskiy, Y., Oh, WJ. et al. Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci 15, 1667–1674 (2012). https://doi.org/10.1038/nn.3256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing