Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attention increases neural selectivity in the human lateral occipital complex

Abstract

It is well established that attention increases the efficiency of information processing, but the neural mechanisms underlying this improvement are not fully understood. Evidence indicates that neural firing rates increase for attended stimuli, but another possibility is that attention could increase the selectivity of the neural population representing an attended stimulus. We tested this latter hypothesis by using functional magnetic resonance imaging (fMRI) to measure population selectivity for object views under different attention conditions in the human lateral occipital complex (LOC). Our data not only show increased neural activity (or 'gain') with attention, consistent with existing models, but also increased population selectivity that cannot be accounted for by gain mechanisms alone. Our results suggest that attention increases the specificity of the neural population representing an attended object.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Region of interest.
Figure 2: Schematic of the event-related design.
Figure 3: LOC results for experiment 1.
Figure 4: Adaptation model.
Figure 5: LOC results for experiment 2.

Similar content being viewed by others

References

  1. Rensink, R.A., O'Regan, J.K. & Clark, J.J. To see or not to see: the need for attention to perceive changes in scenes. Psychol. Sci. 8, 368–373 (1997).

    Article  Google Scholar 

  2. Simons, D.J. Attentional capture and inattentional blindness. Trends Cogn. Sci. 4, 147–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hillyard, S.A., Vogel, E.K. & Luck, S.J. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Phil. Trans. R. Soc. Lond. B.Biol. Sci. 353, 1257–1270 (1998).

    Article  CAS  Google Scholar 

  6. Maunsell, J.H.R. & Cook, E.P. The role of attention in visual processing. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1063–1072 (2002).

    Article  Google Scholar 

  7. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338–340 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Haenny, P.E. & Schiller, P.H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. McAdams, C.J. & Maunsell, J.H.R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Treue, S. & Martinez Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Treue, S. & Maunsell, J.H.R. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J. Neurosci. 19, 7591–7602 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pasupathy, A. & Connor, C.E. Population coding of shape in area V4. Nat. Neurosci. 5, 1332–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanwisher, N., Woods, R., Iacoboni, M. & Mazziotta, J. A locus in human extrastriate cortex for visual shape analysis. J. Cogn. Neurosci. 9, 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kourtzi, Z. & Kanwisher, N. Cortical regions involved in perceiving object shape. J. Neurosci. 20, 3310–3318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buckner, R.L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, E.K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 103, 293–321 (2001).

    Article  Google Scholar 

  22. Bülthoff, H.H. & Edelman, S.Y. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA 89, 60–64 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tarr, M.J., Williams, P., Hayward, W.G. & Gauthier, I. Three-dimensional object recognition is viewpoint dependent. Nat. Neurosci. 1, 275–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Logothetis, N.K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb. Cortex 3, 270–288 (1995).

    Article  Google Scholar 

  25. Logothetis, N.K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    CAS  PubMed  Google Scholar 

  26. James, T.W., Humphrey, G.K., Gati, J.S., Menon, R.S. & Goodale, M.A. Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35, 793–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Vuilleumier, P., Henson, R.N., Driver, J. & Dolan, R.J. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5, 491–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Boynton, G.M. & Finney, E.M. Orientation-specific adaptation in human visual cortex. J. Neurosci. 23, 8781–8787 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248, 1556–1559 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. O'Craven, K.M., Rosen, B.R., Kwong, K.K., Treisman, A. & Savoy, R.L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Wojciulik, E., Kanwisher, N. & Driver, J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J. Neurophysiol. 79, 1574–1578 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Reynolds, J.H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Yeshurun, Y. & Carrasco, M. Spatial attention improves performance in spatial resolution tasks. Vis. Res. 39, 293–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Dale, A.M., Fischl, B. & Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Fischl, B., Sereno, M.I. & Dale, A.M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Buracas, G.T. & Boynton, G.M. Efficient design of event-related fMRI experiments using M-sequences. Neuroimage 16, 801–813 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Kersten, B. Olshausen, M. Usrey, D. Woods, C. Petkov and C. Ranganath for comments on earlier versions, and N. Kanwisher for many helpful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott O Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of all of the 40 object shapes used in Experiments 1 and 2. Actual image files and software used to present them are available for download at www.neurobs.com. (PDF 235 kb)

Supplementary Fig. 2

Percent signal change in the left and right LOC. No differences were observed between the two hemispheres in the magnitude effect, the rotation-dependent responses, or the task by rotation interaction. (PDF 66 kb)

Supplementary Fig. 3

V1/V2 results for Experiment 1. No significant main effects or interactions were observed. (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, S., Wojciulik, E. Attention increases neural selectivity in the human lateral occipital complex. Nat Neurosci 7, 70–74 (2004). https://doi.org/10.1038/nn1161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing