Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1

Abstract

A key step in glutamatergic synapse maturation is the replacement of developmentally expressed N-methyl-D-aspartate receptors (NMDARs) with mature forms that differ in subunit composition, electrophysiological properties and propensity to elicit synaptic plasticity. However, the mechanisms underlying the removal and replacement of synaptic NMDARs are poorly understood. Here we demonstrate that NMDARs containing the developmentally regulated NR3A subunit undergo rapid endocytosis from the dendritic plasma membrane in cultured rat hippocampal neurons. This endocytic removal is regulated by PACSIN1/syndapin1, which directly and selectively binds the carboxy-terminal domain of NR3A through its NPF motifs and assembles a complex of proteins including dynamin and clathrin. Endocytosis of NR3A by PACSIN1 is activity dependent, and disruption of PACSIN1 function causes NR3A accumulation at synaptic sites. Our results reveal a new activity-dependent mechanism involved in the regulation of NMDAR expression at synapses during development, and identify a brain-specific endocytic adaptor that confers spatiotemporal and subunit specificity to NMDAR endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMDARs containing NR3A subunits are inefficiently targeted to synapses and reside in intracellular compartments.
Figure 2: NR3A localizes to extrasynaptic and perisynaptic membrane domains.
Figure 3: Ultrastructural localization of NR3A at CA1 hippocampal synapses of adult rat using postembedding immunogold labeling.
Figure 4: NR3A-containing NMDARs undergo activity-dependent endocytosis in hippocampal neurons.
Figure 5: NR3A binds the neuron-specific endocytic adaptor PACSIN1/syndapin1.
Figure 6: PACSIN1 mediates NR3A endocytosis.
Figure 7: PACSIN1 reduces the functional surface expression of NR3A-containing triheteromeric NMDARs.
Figure 8: PACSIN1 mediates synaptic removal of NR3A.

Similar content being viewed by others

References

  1. Petralia, R.S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci. 2, 31–36 (1999).

    Article  CAS  Google Scholar 

  2. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N. & Jan, L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147 (1994).

    Article  CAS  Google Scholar 

  3. Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).

    Article  CAS  Google Scholar 

  4. Crair, M.C. & Malenka, R.C. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    Article  CAS  Google Scholar 

  5. Hestrin, S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357, 686–689 (1992).

    Article  CAS  Google Scholar 

  6. Perez-Otaño, I. & Ehlers, M.D. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13, 175–189 (2004).

    Article  Google Scholar 

  7. Wenthold, R.J., Prybylowski, K., Standley, S., Sans, N. & Petralia, R.S. Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol. 43, 335–358 (2003).

    Article  CAS  Google Scholar 

  8. Das, S. et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381 (1998).

    Article  CAS  Google Scholar 

  9. Wong, H.K. et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 450, 303–317 (2002).

    Article  CAS  Google Scholar 

  10. Perez-Otaño, I. et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J. Neurosci. 21, 1228–1237 (2001).

    Article  Google Scholar 

  11. Sasaki, Y.F. et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 87, 2052–2063 (2002).

    Article  CAS  Google Scholar 

  12. Chatterton, J.E. et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793–798 (2002).

    Article  CAS  Google Scholar 

  13. Akaaboune, M., Culican, S.M., Turney, S.G. & Lichtman, J.W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).

    Article  CAS  Google Scholar 

  14. Philpot, B.D., Sekhar, A.K., Shouval, H.Z. & Bear, M.F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  Google Scholar 

  15. Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  Google Scholar 

  16. Snyder, E.M. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci. 4, 1079–1085 (2001).

    Article  CAS  Google Scholar 

  17. Nong, Y. et al. Glycine binding primes NMDA receptor internalization. Nature 422, 302–307 (2003).

    Article  CAS  Google Scholar 

  18. Li, B. et al. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat. Neurosci. 5, 833–834 (2002).

    Article  CAS  Google Scholar 

  19. Scott, D.B., Michailidis, I., Mu, Y., Logothetis, D. & Ehlers, M.D. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci. 24, 7096–7109 (2004).

    Article  CAS  Google Scholar 

  20. Washbourne, P., Liu, X.B., Jones, E.G. & McAllister, A.K. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J. Neurosci. 24, 8253–8264 (2004).

    Article  CAS  Google Scholar 

  21. Mu, Y., Otsuka, T., Horton, A.C., Scott, D.B. & Ehlers, M.D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40, 581–594 (2003).

    Article  CAS  Google Scholar 

  22. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  Google Scholar 

  23. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  Google Scholar 

  24. Lavezzari, G., McCallum, J., Dewey, C.M. & Roche, K.W. Subunit-specific regulation of NMDA receptor endocytosis. J. Neurosci. 24, 6383–6391 (2004).

    Article  CAS  Google Scholar 

  25. Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857 (2005).

    Article  CAS  Google Scholar 

  26. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  27. Kessels, M.M. & Qualmann, B. Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J. 21, 6083–6094 (2002).

    Article  CAS  Google Scholar 

  28. Plomann, M. et al. PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells. Eur. J. Biochem. 256, 201–211 (1998).

    Article  CAS  Google Scholar 

  29. Qualmann, B., Roos, J., DiGregorio, P.J. & Kelly, R.B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  Google Scholar 

  30. Rao, A., Kim, E., Sheng, M. & Craig, A.M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  Google Scholar 

  31. Blanpied, T.A., Scott, D.B. & Ehlers, M.D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449 (2002).

    Article  CAS  Google Scholar 

  32. Racz, B., Blanpied, T.A., Ehlers, M.D. & Weinberg, R.J. Lateral organization of endocytic machinery in dendritic spines. Nat. Neurosci. 7, 917–918 (2004).

    Article  CAS  Google Scholar 

  33. Petralia, R.S., Wang, Y.X. & Wenthold, R.J. Internalization at glutamatergic synapses during development. Eur. J. Neurosci. 18, 3207–3217 (2003).

    Article  Google Scholar 

  34. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7, 695–696 (2004).

    Article  CAS  Google Scholar 

  35. Mori, H. et al. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron 21, 571–580 (1998).

    Article  CAS  Google Scholar 

  36. Steigerwald, F. et al. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J. Neurosci. 20, 4573–4581 (2000).

    Article  CAS  Google Scholar 

  37. Racca, C., Stephenson, F.A., Streit, P., Roberts, J.D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  Google Scholar 

  38. Levitt-Gilmour, T.A. & Salpeter, M.M. Gradient of extrajunctional acetylcholine receptors early after denervation of mammalian muscle. J. Neurosci. 6, 1606–1612 (1986).

    Article  CAS  Google Scholar 

  39. Cottrell, J.R., Borok, E., Horvath, T.L. & Nedivi, E. CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 44, 677–690 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Simpson, F. et al. SH3-domain-containing proteins function at distinct steps in clathrin- coated vesicle formation. Nat. Cell Biol. 1, 119–124 (1999).

    Article  CAS  Google Scholar 

  41. Da Costa, S.R. et al. Impairing actin filament or syndapin functions promotes accumulation of clathrin-coated vesicles at the apical plasma membrane of acinar epithelial cells. Mol. Biol. Cell 14, 4397–4413 (2003).

    Article  CAS  Google Scholar 

  42. Coyle, I.P. et al. Nervous wreck, an SH3 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. Neuron 41, 521–534 (2004).

    Article  CAS  Google Scholar 

  43. Qualmann, B. & Kelly, R.B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000).

    Article  CAS  Google Scholar 

  44. Fagiolini, M. et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad Sci. USA 100, 2854–2859.

  45. Roberts, E.B. & Ramoa, A.S. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. J. Neurophysiol. 81, 2587–2591 (1999).

    Article  CAS  Google Scholar 

  46. Lu, H.C., Gonzalez, E. & Crair, M.C. Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Neuron 32, 619–634 (2001).

    Article  Google Scholar 

  47. Kato, N. & Yoshimura, H. Reduced Mg2+ block of N-methyl-D-aspartate receptor-mediated synaptic potentials in developing visual cortex. Proc. Natl. Acad. Sci. USA 90, 7114–7118 (1993).

    Article  CAS  Google Scholar 

  48. Burgard, E.C. & Hablitz, J.J. Developmental changes in the voltage-dependence of neocortical NMDA responses. Brain Res. Dev. Brain Res. 80, 275–278 (1994).

    Article  CAS  Google Scholar 

  49. Cho, K.O., Hunt, C.A. & Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  50. Westphal, R.S. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.F. Wesseling for intellectual support; K. Hawk, A. Zandueta, I. López-García, C. Zhang and H. Zhang for technical help; J.R. Naranjo and M. Palczewska for support with yeast assays; and G. Augustine, T. Blanpied, J. Hernandez, B. Philpot, A. Horton and R. Mooney for critical readings of this manuscript. This work was supported by grants from the National Alliance for Research on Schizophrenia and Depression, the Marie Curie International Reintegration Grant (IRG) Program and the Unión Temporal de Empresas project (UTE) at the Centro de Investigación Médica Aplicada (CIMA; I.P.O.), Deutsche Forschungsgemeinschaft (PL233/1-1, M.P.) and the Center for Molecular Medicine (CMMC) of the University of Cologne (TP78, M.P.). Research in D.C.L.'s laboratory is supported by grants from the US National Institutes of Health (NS32742). S.J.T. is supported by grants from the US National Institutes of Health (NS46661); R.L. by grants from Junta de Comunidades de Castilla-La Mancha (SAN-04-008-00, PAI05-040); M.D.E. by grants from the US National Institutes of Health (NS39402, MH64748), the American Heart Association, the Raymond and Beverley Sackler Foundation and the Ruth K. Broad Foundation; and S.F.H. by the US National Institutes of Health (R01 NS28709) and the McKnight and Adler Foundations. M.D.E is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabel Pérez-Otaño or Michael D Ehlers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Internalized NR3A is transported to early endosomes. (PDF 913 kb)

Supplementary Fig. 2

Expression of NR3A and PACSIN1 in rat brain. (PDF 1096 kb)

Supplementary Fig. 3

Expression of PACSIN1 in hippocampal neurons. (PDF 2455 kb)

Supplementary Fig. 4

Proposed model for activity-dependent synaptic removal of NR3A and regulation of NMDAR maturation during development. (PDF 788 kb)

Supplementary Methods (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Otaño, I., Luján, R., Tavalin, S. et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 9, 611–621 (2006). https://doi.org/10.1038/nn1680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing