Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutralizing the neurotoxic effects of exogenous and endogenous tPA

Abstract

The clinical use of tissue-type plasminogen activator (tPA) in the treatment of stroke is profoundly constrained by its serious side effects. We report that the deleterious effects of tPA on cerebral edema and intracranial bleeding are separable from its fibrinolytic activity and can be neutralized. A hexapeptide (EEIIMD) corresponding to amino acids 350–355 of plasminogen activator inhibitor type 1 (PAI-1) abolished the tPA-induced increase in infarct size and intracranial bleeding in both mechanical and embolic models of stroke in rats, and reduced brain edema and neuronal loss after traumatic brain injury in pigs. These experiments suggest mechanisms to reduce the neurotoxic effects of tPA without compromising its fibrinolytic activity, through the use of selective antagonists and new tPA formulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroprotective effect of the PAI-1–derived peptide EEIIMD.
Figure 2: The PAI-1–derived peptide does not accelerate tPA clearance.
Figure 3: EEIIMD reduces infarct size in rats treated with tPA after embolic stroke.
Figure 4: EEIIMD decreases histopathologic changes associated with FPI.
Figure 5: Decreasing the degenerating neurons in the cortex by EEIIMD treatment.
Figure 6: EEIIMD decreased the effect of FPI on cortical swelling.
Figure 7: EEIIMD decreases post-FPI brain water content.

Similar content being viewed by others

References

  1. Zivin, J.A. Thrombolytic stroke therapy: past, present, and future. Neurology 53, 14–19 (1999).

    Article  CAS  Google Scholar 

  2. Tsirka, S.E., Bugge, T.H., Degen, J.L. & Strickland, S. Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc. Natl. Acad. Sci. USA 94, 9779–9781 (1997).

    Article  CAS  Google Scholar 

  3. Lapchak, P.A. & Araujo, D.M. Reducing bleeding complications after thrombolytic therapy for stroke: clinical potential of metalloproteinase inhibitors and spin trap agents. CNS Drugs 15, 819–829 (2001).

    Article  CAS  Google Scholar 

  4. Lapchak, P.A. Hemorrhagic transformation following ischemic stroke: significance, causes, and relationship to therapy and treatment. Curr. Neurol. Neurosci. Rep. 2, 1–6 (2002).

    Article  Google Scholar 

  5. Nagai, N., De Mol, M., Van Hoef, B., Verstreken, M. & Collen, D. Depletion of circulating α2-antiplasmin by intravenous plasmin or immunoneutralization reduces focal cerebral ischemic injury in the absence of arterial recanalization. Blood 97, 3086–3092 (2001).

    Article  CAS  Google Scholar 

  6. Nassar, T. et al. The in vitro and in vivo effect of tPA and PAI-1 on blood vessel tone. Blood 103, 897–902 (2004).

    Article  CAS  Google Scholar 

  7. Armstead, W.M., Cines, D.B. & Higazi, A.A.-H. Altered NO function contributes to impairment of uPA and tPA cerebrovasodilation after brain injury. J. Neurotrauma 21, 1204–1211 (2004).

    Article  Google Scholar 

  8. Gennarelli, T.A. Animate models of human head injury. J. Neurotrauma 11, 357–368 (1994).

    Article  CAS  Google Scholar 

  9. Armstead, W., Cines, D. & Higazi, A.A.-R. Plasminogen activators contribute to age-dependent impairment of NMDA cerebrovasodilation after brain injury. Brain Res. Dev. Brain Res. 156, 139–146 (2005).

    Article  CAS  Google Scholar 

  10. Akkawi, S., Nassar, T., Tarshis, M., Cines, D.B. & Higazi, A.A.-R. LRP and αvβ3mediate tPA-activation of smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol., published online 21 April 2006 (doi:10.1152/ajpheart.01042.2005).

  11. Nagai, N., Vlinthout, D. & Collen, D. Comparative effect of tissue plasminogen activator, streptokinase and staphylokinase on cerebral ischemia infarction and pulmonary clot lysis in hamster models. Circulation 100, 2541–2546 (1999).

    Article  CAS  Google Scholar 

  12. Zhang, Z. et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106, 740–745 (2002).

    Article  CAS  Google Scholar 

  13. Zhang, L., Strickland, D.K., Cines, D.B. & Higazi, A.A.-R. Regulation of single chain urokinase binding, internalization and degradation by a plasminogen activator inhibitor 1-derived peptide. J. Biol. Chem. 272, 27053–27057 (1997).

    Article  CAS  Google Scholar 

  14. Adams, H., Adams, R., Del Zoppo, G. & Goldstein, L.B. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the stroke council of the American Heart Association/American Stroke Association. Stroke 36, 916–923 (2005).

    Article  Google Scholar 

  15. Asahi, M., Asahi, K., Wang, X. & Lo, E.H. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 20, 452–457 (2000).

    Article  CAS  Google Scholar 

  16. Higazi, A.A.-R. et al. Lysis of plasma clots by urokinase-soluble urokinase receptor complexes. Blood 92, 2075–2083 (1998).

    CAS  PubMed  Google Scholar 

  17. Higazi, A.A.-R. et al. Regulation of the single-chain urokinase–urokinase receptor complex activity by plasminogen and fibrin: novel mechanism of fibrin specificity. Blood 105, 1021–1028 (2005).

    Article  CAS  Google Scholar 

  18. Bdeir, K., Murciano, J.-C. & Tomaszewski, J. Urokinase mediates fibrinolysis in the pulmonary microvasculature. Blood 96, 1820–1826 (2000).

    CAS  PubMed  Google Scholar 

  19. Atochin, D.N. et al. Mouse model of microembolic stroke and reperfusion. Stroke 35, 2177–2182 (2004).

    Article  CAS  Google Scholar 

  20. Mori, T. et al. Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. Neuroreport 12, 4117–4120 (2001).

    Article  CAS  Google Scholar 

  21. Madison, E.L. et al. Amino acid residues that affect interaction of tissue plasminogen activator with plasminogen activator inhibitor 1. Proc. Natl. Acad. Sci. USA 87, 3530–3534 (1990).

    Article  CAS  Google Scholar 

  22. Madison, E.L., Goldsmith, E.J., Gething, M.-J.H., Sambrook, J.F. & Gerard, R.D. Restoration of serine protease-inhibitor interaction by protein engineering. J. Biol. Chem. 265, 21423–21426 (1990).

    CAS  PubMed  Google Scholar 

  23. Duhaime, A. & Raghupathi, R. Age-specific therapy for traumatic injury of the immature brain: experimental approaches. Exp. Toxicol. Pathol. 51, 172–177 (1999).

    Article  CAS  Google Scholar 

  24. Dickerson, J. & Dobbing, J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc. R. Soc. Lond. B Biol. Sci. 166, 384–395 (1967).

    Article  CAS  Google Scholar 

  25. Pampiglione, G. Some aspects of development of cerebral function in mammals. Proc. R. Soc. Lond. B Biol. Sci. 64, 429–435 (1971).

    CAS  Google Scholar 

  26. Thomas, J. & Beamer, J. Age-weight relationship selected organs and body weight for miniature swine. Growth Factors 35, 259–272 (1971).

    CAS  Google Scholar 

  27. Buckley, N. Maturation of circulatory system in three mammalian models of human development. Comp. Biochem. Physiol. A 83, 1–7 (1986).

    Article  CAS  Google Scholar 

  28. Wagerle, L., Humar, S. & Delivoria-Papadopoulos, M. Effect of sympathetic nerve stimulation on cerebral blood flow in newborn piglets. Pediatr. Res. 20, 131–135 (1986).

    Article  CAS  Google Scholar 

  29. Rebich, S., Devine, J. & Armstead, W.M. The role of nitric oxide and cAMP in beta-adrenoceptor-induced pial artery vasodilation. Am. J. Physiol. 268, H1071–H1076 (1995).

    CAS  PubMed  Google Scholar 

  30. Ding-Zhou, L., Marchand-Verrecchia, C., Croci, N., Plotkine, M. & Margaill, I. L-NAME reduces infarction, neurological deficit and blood-brain barrier disruption following cerebral ischemia in mice. Eur. J. Pharmacol. 457, 137–146 (2002).

    Article  Google Scholar 

  31. Bdeir, K. et al. Urokinase contributes to fibrinolysis in the pulmonary microcirculation. Blood 96, 1820–1826 (2000).

    CAS  PubMed  Google Scholar 

  32. Higazi, A.A.-R., Barghouti, I.I. & Abu-Much, R. Identification of an inhibitor of tissue-type plasminogen activator-mediated fibrinolysis in human neutrophils. J. Biol. Chem. 270, 9472–9477 (1995).

    Article  CAS  Google Scholar 

  33. Felix, B. et al. Stereotaxic atlas of the pig brain. Brain Res. Bull. 49, 1–137 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants HL06831, HL076406, HL076206, HL82545 and HL67381), the University of Pennsylvania Research Foundation and the Israeli Science Foundation (grant 930/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd Al-Roof Higazi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstead, W., Nassar, T., Akkawi, S. et al. Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nat Neurosci 9, 1150–1155 (2006). https://doi.org/10.1038/nn1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing