Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway

Abstract

We investigated the role of regionally discrete GABA (γ-aminobutyric acid) receptors in the sedative response to pharmacological agents that act on GABAA receptors (muscimol, propofol and pentobarbital; 'GABAergic agents') and to ketamine, a general anesthetic that does not affect GABAA receptors. Behavioral studies in rats showed that the sedative response to centrally administered GABAergic agents was attenuated by the GABAA receptor antagonist gabazine (systemically administered). The sedative response to ketamine, by contrast, was unaffected by gabazine. Using c-Fos as a marker of neuronal activation, we identified a possible role for the tuberomammillary nucleus (TMN): when gabazine was microinjected directly into the TMN, it attenuated the sedative response to GABAergic agents. Furthermore, the GABAA receptor agonist muscimol produced a dose-dependent sedation when it was administered into the TMN. We conclude that the TMN is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified NREM sleep-promoting pathway.
Figure 2: Systemic gabazine attenuates sedation induced by GABAergic agents but not by NMDA receptor–mediated agents.
Figure 3: c-Fos expression induced by GABAergic agents.
Figure 4: Effects of discrete injections of GABAA receptor agonist and antagonist into the TMN.

Similar content being viewed by others

References

  1. Sawamura, S. et al. Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J. Neurosci. 20, 9242–9251 (2000).

    Article  CAS  Google Scholar 

  2. Lin, L.H., Whiting, P. & Harris, R.A. Molecular determinants of general anesthetic action: role of GABAA receptor structure. J. Neurochem. 60, 1548–1553 (1993).

    Article  CAS  Google Scholar 

  3. Tanelian, D.L., Kosek, P., Mody, I. & MacIver, M.B. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776 (1993).

    Article  CAS  Google Scholar 

  4. Franks, N.P. & Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614 (1994).

    Article  CAS  Google Scholar 

  5. Belelli, I., Pistis, I., Peters, J.A. & Lambert, J.J. General anaesthetic action at transmitter-gated inhibitory amino acid receptors. Trends Pharmacol. Sci. 20, 496–502 (1999).

    Article  CAS  Google Scholar 

  6. Krasowski, M.D. & Harrison, N.L. General anesthetic actions on ligand-gated ion channels. Cell Mol. Life Sci. 55, 1278–1303 (1999).

    Article  CAS  Google Scholar 

  7. Collingridge, G.L., Gage, P.W. & Robertson, B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J. Physiol. (Lond.) 356, 551–564 (1984).

    Article  CAS  Google Scholar 

  8. Gage, P.W. & McKinnon, D. Effects of pentobarbitone on acetylcholine-activated channels in mammalian muscle. Br. J. Pharmacol. 85, 229–235 (1985).

    Article  CAS  Google Scholar 

  9. Akaike, N., Tokutomi, N. & Ikemoto, Y. Augmentation of GABA-induced current in frog sensory neurons by pentobarbital. Am. J. Physiol. 258, C452–C460 (1990).

    Article  CAS  Google Scholar 

  10. Hales, T.G. & Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol. 104, 619–628 (1991).

    Article  CAS  Google Scholar 

  11. Hara, M., Kai, Y. & Ikemoto, Y. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology 79, 781–788 (1993).

    Article  CAS  Google Scholar 

  12. Cheng, S.C. & Brunner, E.A. Inducing anesthesia with a GABA analog, THIP. Anesthesiology 63, 147–151 (1985).

    Article  CAS  Google Scholar 

  13. Alkire, M.T. et al. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82, 393–403 (1995).

    Article  CAS  Google Scholar 

  14. Fiset, P. et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci. 19, 5506–5513 (1999).

    Article  CAS  Google Scholar 

  15. Devor, M. & Zalkind, V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 94, 101–112 (2001).

    Article  CAS  Google Scholar 

  16. Sherin, J.E., Shiromani, P.J., McCarley, R.W. & Saper, C.B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).

    Article  CAS  Google Scholar 

  17. Sherin, J.E., Elmquist, J.K., Torrealba, F. & Saper, C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18, 4705–4721 (1998).

    Article  CAS  Google Scholar 

  18. Lin, J.S., Sakai, K. & Jouvet, M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27, 111–122 (1988).

    Article  CAS  Google Scholar 

  19. Lin, J.S., Hou, Y., Sakai, K. & Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci. 16, 1523–1537 (1996).

    Article  CAS  Google Scholar 

  20. Steininger, T.L., Alam, M.N., Gong, H., Szymusiak, R. & McGinty, D. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 840, 138–147 (1999).

    Article  CAS  Google Scholar 

  21. Monti, J.M. Involvement of histamine in the control of the waking state. Life Sci. 53, 1331–1338 (1993).

    Article  CAS  Google Scholar 

  22. Pompeiano, M., Cirelli, C., Arrighi, P. & Tononi, G. c-Fos expression during wakefulness and sleep. Neurophysiol. Clin. 25, 329–341 (1995).

    Article  CAS  Google Scholar 

  23. Ericson, H., Kohler, C. & Blomqvist, A. GABA-like immunoreactivity in the tuberomammillary nucleus: an electron microscopic study in the rat. J. Comp. Neurol. 305, 462–469 (1991).

    Article  CAS  Google Scholar 

  24. Nitz, D. & Siegel, J.M. GABA release in posterior hypothalamus across sleep-wake cycle. Am. J. Physiol. 271, R1707–R1712 (1996).

    CAS  PubMed  Google Scholar 

  25. Steininger, T.L., Gong, H., McGinty, D. & Szymusiak, R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J. Comp. Neurol. 429, 638–653 (2001).

    Article  CAS  Google Scholar 

  26. Anis, N.A., Berry, S.C., Burton, N.R. & Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol. 79, 565–575 (1983).

    Article  CAS  Google Scholar 

  27. Jevtovic-Todorovic, V. et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat. Med. 4, 460–463 (1998).

    Article  CAS  Google Scholar 

  28. Franks, N.P., Dickinson, R., de Sousa, S.L., Hall, A.C. & Lieb, W.R. How does xenon produce anesthesia? Nature 396, 324 (1998).

    Article  CAS  Google Scholar 

  29. Lam, D.W. & Reynolds, J.N. Modulatory and direct effects of propofol on recombinant GABAA receptors expressed in xenopus oocytes: influence of alpha- and gamma2-subunits. Brain Res. 784, 179–187 (1998).

    Article  CAS  Google Scholar 

  30. Stell, B.M. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002).

    Article  Google Scholar 

  31. Barker, J.L. & Gainer, H. Pentobarbital: selective depression of excitatory postsynaptic potentials. Science 182, 720–722 (1973).

    Article  CAS  Google Scholar 

  32. Hoffman, G.E., Smith, M.S. & Verbalis, J.G. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrinol. 14, 173–213 (1993).

    Article  CAS  Google Scholar 

  33. Cirelli, C., Pompeiano, M. & Tononi, G. Fos-like immunoreactivity in the rat brain in spontaneous wakefulness and sleep. Arch. Ital. Biol. 131, 327–330 (1993).

    CAS  PubMed  Google Scholar 

  34. Cirelli, C. & Tononi, G. On the functional significance of c-fos induction during the sleep-waking cycle. Sleep 23, 453–469 (2000).

    CAS  Google Scholar 

  35. Chou, T.C. et al. Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22, 997–990 (2002).

    Google Scholar 

  36. Airaksinen, M.S., Alanen, S., Szabat, E., Visser, T.J. & Panula, P. Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J. Comp. Neurol. 323, 103–116 (1992).

    Article  CAS  Google Scholar 

  37. Gallopin, T. et al. Identification of sleep-promoting neurons in vitro. Nature 404, 992–995 (2000).

    Article  CAS  Google Scholar 

  38. Correa-Sales, C., Rabin, B.C. & Maze, M. A hypnotic response to dexmedetomidine, an α2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 76, 948–952 (1992).

    Article  CAS  Google Scholar 

  39. Adodra, S. & Hales, T.G. Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT1-7 neurones by propofol. Br. J. Pharmacol. 115, 953–960 (1995).

    Article  CAS  Google Scholar 

  40. Paxinos, G. & Watson, G. The Rat Brain in Stereotaxic Coordinates (Academic, San Diego, 1998).

    Google Scholar 

  41. Waud, D.R. On biological assays involving quantal responses. J. Pharmacol. Exp. Ther. 183, 577–607 (1972).

    CAS  PubMed  Google Scholar 

  42. Elmquist, J.K., Scammell, T.E., Jacobson, C.D. & Saper, C.B. Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371, 85–103 (1996).

    Article  CAS  Google Scholar 

  43. Depczynski, B. et al. Distribution and characterization of the cell types expressing GALR2 mRNA in brain and pituitary gland. Ann. NY Acad. Sci. 863, 120–128 (1998).

    Article  CAS  Google Scholar 

  44. Villar, M.J. et al. Neuropeptide gene expression in hypothalamic magnocellular neurons of normal and hypophysectomized rats: a combined immunohistochemical and in situ hybridization study. Neuroscience 36, 181–199 (1990).

    Article  CAS  Google Scholar 

  45. Saper, C.B. Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J. Comp. Neurol. 237, 21–46 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Medical Research Council (UK; G9817980 and G9100635), the Westminster Medical Trust (UK) and the National Institutes of Health (USA; HL60292 and AG09975) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Franks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, L., Guo, T., Lu, J. et al. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 5, 979–984 (2002). https://doi.org/10.1038/nn913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing