Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The gelatin sponge–chorioallantoic membrane assay

This article has been updated

Abstract

Here we present a method for the quantification of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane (CAM) based on the implantation of a gelatin sponge on the top of the growing CAM on day 8 of development. After implantation, the sponge is treated with a stimulator of blood vessel formation in the absence or presence of an angiogenesis inhibitor. On day 12, blood vessels that are growing into the sponge are counted at macroscopic and microscopic levels. The estimated timeline for carrying out this protocol is 10 d. The presence of a vascular network in the CAM requires a careful analysis to distinguish new capillaries from pre-existing ones. This limitation does not occur in the avascular cornea assay, which may also take advantage of different genetic backgrounds when carried out in transgenic or knockout mice. Nevertheless, the gelatin sponge–CAM assay is simple, inexpensive and suitable for large-scale screening.

*Note: In the version of the article initially published online, references 6 and 7 were incorrect. The correct references are: 6. Serbedzija, G.N., Flynn, E. & Willet, C.E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3, 519–528 (2000). 7. Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40, 1189–1897 (1996). The error has been corrected in all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAM vessels (arrow) beneath the square window are photographed in ovo on day 3 of development.
Figure 2: An illustrative sponge–CAM assay in which a proangiogenic stimulus, an angiostatic compound and a vehicle were applied on top of the CAM on day 8.
Figure 3: Evaluation of a proangiogenic response by macroscopic semiquantitative scoring.
Figure 4: Evaluation of a proangiogenic response by macroscopic semiquantitative scoring of vessel branching.
Figure 5: Effect of VEGF-overexpressing V12-MCF-7 cells on CAM vascularization.
Figure 6: Effect of ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), on the angiogenic response induced by FGF-2.

Similar content being viewed by others

Change history

  • 10 August 2006

    In the version of the article initially published online, references 6 and 7 were incorrect. The correct references are:

References

  1. Auerbach, R., Auerbach, W. & Polakowski, I. Assays for angiogenesis: a review. Pharmacol. Ther. 51, 1–11 (1991).

    Article  Google Scholar 

  2. Ribatti, D. & Vacca, A. Models for studying angiogenesis in vivo. Int. J. Biol. Markers 14, 207–213 (1999).

    Article  CAS  Google Scholar 

  3. Andrade, S.P., Fan, T.P.D. & Lewis, G.P. Quantitative in vivo studies on angiogenesis in a rat sponge model. Br. J. Exp. Pathol. 68, 755–766 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fajardo, L.F., Kowalski, J., Kwan, H.H., Prionas, S.D. & Allison, A.C. The disc angiogenesis system. Lab. Invest. 58, 718–724 (1998).

    Google Scholar 

  5. Passaniti, A. et al. A simple, quantitative method for expressing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

  6. Serbedzija, G.N., Flynn, E. & Willets, C.E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis. 3, 519–528 (2000).

    Google Scholar 

  7. Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40, 1189–1897 (1996).

    CAS  PubMed  Google Scholar 

  8. Ribatti, D. The first evidence of the tumor-induced angiogenesis in vivo by using the chorioallantoic membrane assay dated 1913. Leukemia 18, 1350–1351 (2004).

    Article  Google Scholar 

  9. Ausprunk, D.H., Knighton, D.R. & Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Am. J. Pathol. 79, 597–610 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Knighton, D., Ausprunk, D.H., Tapper, D. & Folkman, J. Avascular and vascular phases of tumor growth in the chick embryo. Br. J. Cancer 35, 347–356 (1977).

    Article  CAS  Google Scholar 

  11. Ribatti, D. et al. Angiogenesis induced by B-cell non-Hodgkin's lymphomas. Lack of correlation with tumor malignancy and immunologic phenotype. Anticancer Res. 10, 401–406 (1990).

    CAS  PubMed  Google Scholar 

  12. Wilting, J., Christ, B. & Bokeloh, M. A modified chorioallantoic membrane (CAM) assay for qualitative and quantitative study of growth factors. Anat. Embryol. (Berl.) 183, 259–271 (1991).

    Article  CAS  Google Scholar 

  13. Ausprunk, D.H., Knighton, D.R. & Folkman, J. Differentiation of the vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev. Biol. 38, 237–247 (1974).

    Article  CAS  Google Scholar 

  14. Leene, W., Duyzings, M.J.M. & Von Steeg, C. Lymphoid stem cell identification in the developing thymus and bursa of Fabricius of the chick. Z. Zellforsh. 136, 521–533 (1973).

    Article  CAS  Google Scholar 

  15. Knighton, D.R., Fiegel, V.D. & Philipps, G.D. The assays for angiogenesis. Prog. Clin. Biol. Res. 365, 291–299 (1991).

    CAS  PubMed  Google Scholar 

  16. Gimbrone, M.A.J., Cotran, R.S., Leapman, S.B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413–427 (1974).

    Article  Google Scholar 

  17. Hasan, J. et al. Quantitative angiogenesis assays in vivo. A review. Angiogenesis 7, 1–16 (2004).

    Article  CAS  Google Scholar 

  18. Chen, C. et al. A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res. 55, 4230–4233 (1995).

    CAS  PubMed  Google Scholar 

  19. Jakob, W., Jentzsch, K.D., Manersberger, B. & Heider, G. The chick chorioallantoic membrane as bioassay for angiogenesis factors: reactions induced by carrier materials. Exp. Pathol. 15, 241–249 (1978).

    CAS  Google Scholar 

  20. Spanel-Burowski, K., Schnapper, U. & Heymer, B. The chick chorioallantoic membrane assay in the assessment of angiogenic factors. Biomed. Res. 9, 253–260 (1988).

    Article  Google Scholar 

  21. Ribatti, D. et al. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J. Vasc. Res. 34, 455–463 (1997).

    Article  CAS  Google Scholar 

  22. Ribatti, D. et al. Cell-mediated delivery of fibroblast growth factor-2 and vascular endothelial growth factor onto the chick chorioallantoic membrane: endothelial fenestration and angiogenesis. J. Vasc. Res. 38, 389–397 (2001).

    Article  CAS  Google Scholar 

  23. Ribatti, D., Alessandri, G., Vacca, A., Iurlaro, M. & Ponzoni, M. Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenic in vivo. Int. J. Cancer 77, 449–454 (1998).

    Article  CAS  Google Scholar 

  24. Vacca, A. et al. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int. J. Clin. Lab. Res. 28, 55–68 (1998).

    Article  CAS  Google Scholar 

  25. Vacca, A. et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93, 3064–3073 (1999).

    CAS  PubMed  Google Scholar 

  26. Ribatti, D., Nico, B., Vacca, A., Roncali, L., Burri, P.H. & Djonov, V. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat. Rec. 264, 317–324 (2001).

    Article  CAS  Google Scholar 

  27. Folkman, J. & Cotran, R. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16, 207–248 (1976).

    CAS  PubMed  Google Scholar 

  28. Barnhill, R.L. & Ryan, T.J. Biochemical modulation of angiogenesis in the chorioallantoic membrane of the chick embryo. J. Invest. Dermatol. 81, 485–488 (1983).

    Article  CAS  Google Scholar 

  29. Dusseau, J.W., Hutchins, P.M. & Malsaba, D.S. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ. Res. 59, 163–170 (1986).

    Article  CAS  Google Scholar 

  30. Conconi, M.T. et al. Ghrelin inhibits FGF-2 mediated angiogenesis in vitro and in vivo. Peptides 25, 2179–2185 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, National and Regional Funds), Milan; MIUR (Interuniversity Funds for Basic Research, FIRB 2001, Center of Excellence IDET, and PRIN 2005), Rome; Istituto Superiore di Sanità (Oncotechnological Project), Rome; Fondazione Italiana per la Lotta al Neuroblastoma, Genoa, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribatti, D., Nico, B., Vacca, A. et al. The gelatin sponge–chorioallantoic membrane assay. Nat Protoc 1, 85–91 (2006). https://doi.org/10.1038/nprot.2006.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.13

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing