Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mixed-culture assays for analyzing neuronal synapse formation

Abstract

The assembly of synapses in the vertebrate central nervous system requires bidirectional signaling across the synaptic cleft that directs the differentiation of pre- and postsynaptic membrane domains. Biochemical and genetic studies have identified several adhesion and signaling molecules that localize to synapses and might participate in organizing synaptic structures. Understanding how individual proteins contribute to synaptic organization is complicated by the fact that there are significant numbers of separate signals that cooperate in this process. This protocol describes an assay system that permits examination of synaptogenic activities of individual cell-surface proteins in isolation. Besides the time needed for preparation and growth of primary neuronal cultures (6–14 days), the execution and analysis of the assay is rapid, requiring approximately 2 days. Using this assay, recent studies revealed that single synaptic adhesion complexes can direct a remarkable degree of synaptic differentiation and provided new insights into the cell biological mechanisms of synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-culture design.

Similar content being viewed by others

References

  1. Waites, C.L., Marie Craig, A. & Garner, C.C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  Google Scholar 

  2. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  Google Scholar 

  3. Scheiffele, P. Cell–cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003).

    Article  CAS  Google Scholar 

  4. Benson, D.L., Colman, D.R. & Huntley, G.W. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2, 899–909 (2001).

    Article  CAS  Google Scholar 

  5. Hall, A.C., Lucas, F.R. & Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    Article  CAS  Google Scholar 

  6. Umemori, H., Linhoff, M.W., Ornitz, D.M. & Sanes, J.R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257–270 (2004).

    Article  CAS  Google Scholar 

  7. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  8. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  Google Scholar 

  9. Kim, S. et al. NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat. Neurosci. 9, 1294–1301 (2006).

    Article  CAS  Google Scholar 

  10. Graf, E.R., Zhang, X., Jin, S.-X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  11. Sara, Y. et al. Selective capability of SynCAM and neuroligin for functional synapse assembly. J. Neurosci. 25, 260–270 (2005).

    Article  CAS  Google Scholar 

  12. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  Google Scholar 

  13. Prange, O., Wong, T.P., Gerrow, K., Wang, Y.T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl. Acad. Sci. USA 101, 13915–13920 (2004).

    Article  CAS  Google Scholar 

  14. O'Brien, R.J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

    Article  CAS  Google Scholar 

  15. Fu, Z., Washbourne, P., Ortinski, P. & Vicini, S. Functional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J. Neurophysiol. 90, 3950–3957 (2003).

    Article  CAS  Google Scholar 

  16. Nam, C.I. & Chen, L. Postsynaptic assembly induced by neurexin–neuroligin interaction and neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 6137–6142 (2005).

    Article  CAS  Google Scholar 

  17. Betz, W.J., Mao, F. & Smith, C.B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  CAS  Google Scholar 

  18. Kavalali, E.T., Klingauf, J. & Tsien, R.W. Properties of fast endocytosis at hippocampal synapses. Philos. Trans. R. Soc. London - B 354, 337–346 (1999).

    Article  CAS  Google Scholar 

  19. Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  CAS  Google Scholar 

  20. Anderson, T.R., Shah, P.A. & Benson, D.L. Maturation of glutamatergic and GABAergic synapse composition in hippocampal neurons. Neuropharmacology 47, 694–705 (2004).

    Article  CAS  Google Scholar 

  21. deAnda, F.C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).

    Article  Google Scholar 

  22. Goslin, K., Schreyer, D.J., Skene, J.H. & Banker, G. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336, 672–674 (1988).

    Article  CAS  Google Scholar 

  23. Xu, P. et al. In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J. Biol. Chem. 278, 48422–48433 (2003).

    Article  CAS  Google Scholar 

  24. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin–neurexin complex. Neuron 51, 171–178 (2006).

    Article  CAS  Google Scholar 

  25. Akins, M.R. & Greer, C.A. Axon behavior in the olfactory nerve reflects the involvement of catenin–cadherin mediated adhesion. J. Comp. Neurol. 499, 979–989 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.B. acknowledges the advice and support he received while collaborating with Dr. Ege Kavalali, UT Southwestern Medical Center, Dallas, on FM imaging and electrophysiological analyses of the mixed-culture system and thanks Massimiliano Stagi for manuscript comments. P.S. thanks members of his laboratory for comments on the manuscript. Work in the laboratory of P.S. was supported by R01 NS532830 and that in the laboratory of T.B. by R01 DA018928.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Biederer or Peter Scheiffele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biederer, T., Scheiffele, P. Mixed-culture assays for analyzing neuronal synapse formation. Nat Protoc 2, 670–676 (2007). https://doi.org/10.1038/nprot.2007.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.92

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing