Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring bone blood supply in mice using fluorescent microspheres

Abstract

Fluorescent microspheres are commonly used to assess bone blood supply in large animals, but the technique is not widely used in smaller mammals, as traditional methods such as reference blood sampling, ventilation and catheterization are not easily applied. This protocol describes a viable alternative for measuring bone and organ perfusion in mice using modified fluorescent microsphere techniques. Microspheres are injected directly into the left heart and a reference tissue is used to calculate relative bone and organ blood supply. On the basis of a sample of 15 mice with 5 tissues each, the entire protocol takes 140.5 h to complete from animal preparation through statistical analysis. This timing includes 72 h of mandated pauses for bone decalcification and digestion, as well as 48 h for data analysis. Exclusive of pauses or additional analyses that could increase the time required, this protocol takes 20.5 h bench time to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative microsphere deposition in the tibia.
Figure 2: Flowchart illustrating the fluorescent microsphere injection and recovery procedures used here.

Similar content being viewed by others

References

  1. Tothill, P., Hooper, G., Hughes, S.P.F. & McCarthy, I.D. Bone blood flow measured with microspheres: the problem of non-entrapment. Clin. Phys. Physiol. Meas. 8, 51–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Fluorescent Microsphere Resource Center. Manual for Using Fluorescent Microspheres to Measure Regional Organ Perfusion (University of Washington, Seattle, Washington, 1999).

  3. Quintana, A., Raczka, E. & Bonaccorsi, A. Cardiac output distribution measured with radioactive microspheres in the mouse. Pharmacol. Res. Commun. 11, 245–252 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Glenny, R.W., Bernard, S. & Brinkley, M. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J. Appl. Physiol. 74, 2585–2597 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, W., Riggs, K.W., Theis, R.L. & Rurak, D.W. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb. Can. J. Physiol. Pharmacol. 75, 959–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Prinzen, F.W. & Bassingthwaighte, J.B. Blood flow distribution by microsphere deposition methods. Cardiovasc. Res. 45, 13–21 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anetzberger, H., Thein, E., Becker, M., Zwissler, B. & Messmer, K. Microspheres accurately predict regional bone blood flow. Clin. Orthop. Relat. Res. 424, 253–265 (2004).

    Article  Google Scholar 

  8. Anetzberger, H., Thein, E., Maier, M., Birkenmaier, C. & Messmer, K. Fluorescent microspheres are reliable for serial bone blood flow measurements. Clin. Orthop. Relat. Res. 427, 241–248 (2004).

    Article  Google Scholar 

  9. Anetzberger, H., Thein, E., Becker, M., Walli, A.K. & Messmer, K. Validity of fluorescent microspheres method for bone blood flow measurement during intentional arterial hypotension. J. Appl. Physiol. 95, 1153–1158 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Fuchs, H. et al. The German Mouse Clinic: a platform for systemic phenotypic analysis of mouse models. Curr. Pharm. Biotechnol. 10, 236–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Serrat, M.A., King, D. & Lovejoy, C.O. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc. Natl. Acad. Sci. USA 105, 19347–19352 (2008).

    Article  Google Scholar 

  12. Hedrich, H.J. & Bullock, G. The Laboratory Mouse (Elsevier Academic Press, Boston, Massachusetts, 2004).

  13. Anetzberger, H., Thein, E., Löffler, G. & Messmer, K. Fluorescent microsphere method is suitable for chronic bone blood flow measurement—a long term study after meniscectomy in rabbits. J. Appl. Physiol. 96, 1928–1936 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Tarnavski, O. et al. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol. Genomics 16, 349–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Mitzner, W., Lee, W., Georgakopoulos, D. & Wagner, E. Angiogenesis in the mouse lung. Am. J. Pathol. 157, 93–101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarin, S.K., Sabba, C. & Groszmann, R.J. Splanchnic and systemic hemodynamics in mice using a radioactive microsphere technique. Am. J. Physiol. 258, G365–G369 (1990).

    CAS  PubMed  Google Scholar 

  17. Barbee, R.W., Perry, B.D., Ré, R.N. & Murgo, J.P. Microsphere and dilution techniques for the determination of blood flows and volumes in conscious mice. Am. J. Physiol. 263, R728–R733 (1992).

    CAS  PubMed  Google Scholar 

  18. Richer, C., Domergue, V., Gervais, M., Bruneval, P. & Giudicelli, J.-F. Fluospheres for cardiovascular phenotyping genetically modified mice. J. Cardiovasc. Pharmacol. 36, 396–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Jacobi, J. et al. Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110, 2424–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Esaki, J. et al. Local sustained release of prostaglandin e(1) induces neovascularization in murine hindlimb ischemia. Circ. J. 73, 1330–1336 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Aardal, N.P., Svanes, K. & Egenberg, K.E. Effect of hypothermia and pentobarbital anaesthesia on the distribution of cardiac output in rabbits. Eur. Surg. Res. 5, 372 (1973).

    Article  Google Scholar 

  22. Bennett, B.T., Brown, M.J. & Schofield, J.C. Essentials for Animal Research: A Primer for Research Personnel (National Agriculture Library, Beltsville, Maryland, 1994).

  23. Tothill, P. & MacPherson, J.N. The distribution of blood flow to the whole skeleton in dogs, rabbits and rats measured with microspheres. Clin. Phys. Physiol. Meas. 7, 117–123 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Prisby, R.D. et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation and nitric oxide bioavailability in rats. J. Bone Miner. Res. 22, 1280–1288 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Raab, S., Thein, E., Harris, A.G. & Messmer, K. A new sample-processing unit for the fluorescent microsphere method. Am. J. Physiol. 276, H1801–H1806 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Science Foundation (BCS-0524899). W. Horne, J. Jacobi, D. Rurak, R. Glenny and the Fluorescent Microsphere Resource Center provided valuable input on microsphere injection and recovery techniques, and A. Carey (Sefar America) helped obtain essential filtration material. Special thanks to O. Lovejoy, D. King, W.E. Horton, C. Vinyard, J. Stalvey, R. Meindl, P. Reno, C. Farnum and two anonymous reviewers for critical suggestions and to D. McBurney, B. Armfield, E. Bailey, N. Smallwood and J. Hardwick for advice and technical assistance in developing this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A Serrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrat, M. Measuring bone blood supply in mice using fluorescent microspheres. Nat Protoc 4, 1749–1758 (2009). https://doi.org/10.1038/nprot.2009.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing