Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

EOS lentiviral vector selection system for human induced pluripotent stem cells

Abstract

Generation of induced pluripotent stem (iPS) cells from patients has exciting applications for studying molecular mechanisms of diseases, screening drugs and ultimately for use in cell therapies. However, the low efficiency and heterogeneous nature of reprogramming is a major impediment to the generation of personalized iPS cell lines. We reported in Nature Methods (6, 370–376, 2009) the first selection system to enrich for reprogrammed human iPS cells. Using a lentiviral vector that specifically expresses the enhanced green fluorescence protein and puromycin resistance genes in pluripotent stem cells, it is now possible to mark and enrich for human iPS cell colonies expressing endogenous pluripotency markers. In this study, we describe a detailed protocol for the production of the pluripotent state-specific lentiviral vector and the selection system for the induction of healthy and disease-specific human iPS cells. Overall, preparation of the selection system takes 2 weeks, and the generation of human iPS cells takes 2 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow diagram and timeline of the EOS selection protocol.
Figure 2: Production of EOS lentiviral vector.
Figure 3: Infection of lentiviral vectors into human fibroblasts.
Figure 4: Morphology of early human iPS cell colonies.
Figure 5: Pluripotent marker expression and differentiation abilities.
Figure 6: Characterization of iPS cell lines by teratoma formation.

Similar content being viewed by others

References

  1. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Maherali, N. & Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Ellis, J. et al. Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell 4, 198–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Daley, G.Q. et al. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4, 200–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Yamanaka, S. A fresh look at iPS cells. Cell 137, 13–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Maksakova, I.A. & Mager, D.L. Transcriptional regulation of early transposon elements, an active family of mouse long terminal repeat retrotransposons. J. Virol. 79, 13865–13874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem. 280, 5307–5317 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Tomioka, M. et al. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 30, 3202–3213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buzina, A. et al. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet. 4, e1000051 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Osborne, C.S. et al. Amelioration of retroviral vector silencing in locus control region beta-globin-transgenic mice and transduced F9 embryonic cells. J. Virol. 73, 5490–5496 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hotta, A. & Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem. 105, 940–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Park, I.H., Lerou, P.H., Zhao, R., Huo, H. & Daley, G.Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Ohnuki, M., Takahashi, K. & Yamanaka, S. Generation and characterization of human induced pluripotent stem cells. Curr. Protoc. Stem. Cell Biol. Chapter 4, Unit 4A.2 (2009).

  23. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hotta, A. et al. Characterization of transient expression system for retroviral vector production. J. Biosci. Bioeng. 101, 361–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Burns, J.C., Friedmann, T., Driever, W., Burrascano, M. & Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Sastry, L., Johnson, T., Hobson, M.J., Smucker, B. & Cornetta, K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther. 9, 1155–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Villegas, J. & McPhaul, M. Establishment and culture of human skin fibroblasts. Curr. Protoc. Mol. Biol. Chapter 28, Unit 28.23 (2005).

  33. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Bryja, V., Bonilla, S. & Arenas, E. Derivation of mouse embryonic stem cells. Nat. Protoc. 1, 2082–2087 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Michalska, A. Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Curr. Protoc. Stem. Cell. Biol. Chapter 1, Unit 1C 3 (2007).

  37. Lifson, J.D., Sasaki, D.T. & Engleman, E.G. Utility of formaldehyde fixation for flow cytometry and inactivation of the AIDS associated retrovirus. J. Immunol. Methods 86, 143–149 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Leboulch (Genetics Division, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School) for PL lentiviral vector and packaging plasmids, T. Kitamura (Institute of Medical Science, University of Tokyo) for Plat-E cells and B. Alman for provision of human fibroblasts. We thank T. Thompson, C.A. Séguin and K. Woltjen at the Ontario Human iPS Cell Facility for infrastructure and reagents and J. Garner at the SickKids ES Facility for feeder preparation. This study was supported by grants from the Canadian Institutes of Health Research (MOP-81129, RMF-92090, and IG1-94505 to J.E. and MOP-186015 to W.L.S.), the Ontario Ministry of Research and Innovation (to J.E. and W.L.S. for the Ontario Human iPS Cell Facility), the Stem Cell Network (to J.E. and W.L.S.) and the International Rett Syndrome Foundation (to J.E.). A.H. is supported by a Restracomp Award from SickKids Hospital, A.Y.L.C. by a Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada, N.F. by an Ontario Council of Graduate Studies Master's Autism Scholars Award and the Ontario Student Opportunity Trust Funds Hayden Hantho Award and W.Y.C. by an Ontario Ministry of Research and Innovation Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.H. developed the selection protocol; A.Y.L.C., N.F., K.G. and W.Y.C. derived iPS cell lines, P.P. performed teratoma experiments; W.L.S. and J.E. conceived the study; A.H. and J.E. wrote the paper; and all authors contributed to optimize the protocol and edit the paper.

Corresponding author

Correspondence to James Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotta, A., Cheung, A., Farra, N. et al. EOS lentiviral vector selection system for human induced pluripotent stem cells. Nat Protoc 4, 1828–1844 (2009). https://doi.org/10.1038/nprot.2009.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.201

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing