Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors

Abstract

The importance of the post-translational lipid modifications farnesylation and geranylgeranylation in protein localization and function coupled with the critical role of prenylated proteins in malignant transformation has prompted interest in their biology and the development of farnesyl transferase and geranylgeranyl transferase inhibitors (FTIs and GGTIs) as chemical probes and anticancer agents. The ability to measure protein prenylation before and after FTI and GGTI treatment is important to understanding and interpreting the effects of these agents on signal transduction pathways and cellular phenotypes, as well as to the use of prenylation as a biomarker. Here we describe protocols to measure the degree of protein prenylation by farnesyl transferase or geranylgeranyl transferase in vitro, in cultured cells and in tumors from animals and humans. The assays use [3H]farnesyl diphosphate and [3H]geranylgeranyl diphosphate, electrophoretic mobility shift, membrane association using subcellular fractionation or immunofluorescence of intact cells, [3H]mevalonic acid labeling, followed by immunoprecipitation and SDS-PAGE, and in vitro transcription, translation and prenylation in reticulocyte lysates. These protocols require from 1 d (enzyme assays) to up to 3 months (autoradiography of [3H]-labeled proteins).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear flow diagram summarizing the alternative protocols designed to assess protein prenylation and the effects of PTIs on prenylation.
Figure 2: Typical results from enzyme activity assays described in Step 2A.
Figure 3: Typical results from EMSAs described in Step 2B.
Figure 4: Typical results from subcellular fractionation experiments described in Step 2C.
Figure 5: Typical results from in vitro transcription-translation-prenylation assays described in Step 2E.

Similar content being viewed by others

References

  1. Hancock, J.F., Magee, A.I., Childs, J.E. & Marshall, C.J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Casey, P.J., Solski, P.A., Der, C.J. & Buss, J.E. p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA 86, 8323–8327 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Falsetti, S.C. et al. Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis, and RalA to inhibit anchorage-independent growth. Mol. Cell. Biol. 27, 8003–8014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kohl, N.E. et al. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl. Acad. Sci. USA 91, 9141–9145 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Bishop, W.R. et al. Novel tricyclic inhibitors of farnesyl protein transferase. Biochemical characterization and inhibition of Ras modification in transfected Cos cells. J. Biol. Chem. 270, 30611–30618 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, J. et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, taxol, and gemcitabine. Cancer Res. 59, 4919–4926 (1999).

    CAS  PubMed  Google Scholar 

  8. End, D.W. et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 61, 131–137 (2001).

    CAS  PubMed  Google Scholar 

  9. Sepp-Lorenzino, L. et al. A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 55, 5302–5309 (1995).

    CAS  PubMed  Google Scholar 

  10. Zheng, H. et al. Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett. 297, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, J., Qian, Y., Hamilton, A.D. & Sebti, S.M. Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res. 55, 4243–4247 (1995).

    CAS  PubMed  Google Scholar 

  12. Mangues, R. et al. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res. 58, 1253–1259 (1998).

    CAS  PubMed  Google Scholar 

  13. Cohen-Jonathan, E. et al. The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res. 61, 2289–2293 (2001).

    CAS  PubMed  Google Scholar 

  14. Du, W., Lebowitz, P.F. & Prendergast, G.C. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell. Biol. 19, 1831–1840 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, J.Y. et al. Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J. Natl. Cancer Inst. 97, 1272–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, C.K. et al. The farnesyltransferase inhibitor LB42708 suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signal pathways. Mol. Pharmacol. 78, 142–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, S.Y., Zhou, Z., Wang, R., Fu, H. & Khuri, F.R. The farnesyltransferase inhibitor Lonafarnib induces growth arrest or apoptosis of human lung cancer cells without downregulation of Akt. Cancer Biol. Ther. 3, 1092–1098 discussion 1099–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kazi, A. et al. Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol. Cell. Biol. 29, 2254–2263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moasser, M.M. et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc. Natl. Acad. Sci. USA 95, 1369–1374 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hoover, R.R., Mahon, F.X., Melo, J.V. & Daley, G.Q. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100, 1068–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, K. et al. Farnesyltransferase inhibitor R115777 (Zarnestra, tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest to inhibit tumor growth of multiple myeloma cells. Blood 105, 4759–4766 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Punt, C.J., van Maanen, L., Bol, C.J., Seifert, W.F. & Wagener, D.J. Phase I and pharmacokinetic study of the orally administered farnesyl transferase inhibitor R115777 in patients with advanced solid tumors. Anticancer Drugs 12, 193–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Castro, A.F., Rebhun, J.F., Clark, G.J. & Qilliam, L.A. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem. 278, 32493–32496 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mavrakis, K. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev. 22, 2178–2188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caruso, M.G. et al. Increased farnesyltransferase activity in human colorectal cancer: relationship with clinicopathological features and K-ras mutation. Scand. J. Gastroenterol. 38, 80–85 (2003).

    CAS  PubMed  Google Scholar 

  26. Ryan, D.P. et al. Phase I clinical trial of the farnesyltransferase inhibitor BMS-214662 given as a 1-hour intravenous infusion in patients with advanced solid tumors. Clin. Cancer Res. 10, 2222–2230 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kurzrock, R. et al. Phase I study of alternate-week administration of tipifarnib in patients with myelodysplastic syndrome. Clin. Cancer Res. 14, 509–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kurzrock, R. et al. Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood 102, 4527–4534 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Adjei, A.A. et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 1760–1766 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Sparano, J.A. et al. Phase II trial of tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer. Clin. Cancer Res. 15, 2942–2948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, F.L. & Casey, P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lane, K.T. & Beese, L.S. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 47, 681–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Perez-Sala, D. Protein isoprenylation in biology and disease: General overview and perspectives from studies with genetically engineered animals. Front. Biosci. 12, 4456–4472 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Carboni, J.M. et al. Farnesyltransferase inhibitors are inhibitors of Ras but not R-Ras2/TC21, transformation. Oncogene 10, 1905–1913 (1995).

    CAS  PubMed  Google Scholar 

  35. Moores, S.L. et al. Sequence dependence of protein isoprenylation. J. Biol. Chem. 266, 14603–14610 (1991).

    CAS  PubMed  Google Scholar 

  36. Roskoski, R. Jr. & Ritchie, P. Role of the carboxyterminal residue in peptide binding to protein farnesyltransferase and protein geranylgeranyltransferase. Arch. Biochem. Biophys. 356, 167–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Boutin, J.A. et al. Chromatographic assay and peptide substrate characterization of partially purified farnesyl- and geranylgeranyltransferases from rat brain cytosol. Arch. Biochem. Biophys. 354, 83–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Reid, T.S., Terry, K.L., Casey, P.J. & Beese, L.S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substate selectivity. J. Mol. Biol. 343, 417–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Whyte, D.B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Winter-Vann, A.M. & Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Linder, M.E. & Deschenes, R.J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Baekkeskov, S. & Kanaani, J. Palmitoylation cycles and regulation of protein function (Review). Mol. Membr. Biol. 26, 42–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Maurer-Stroh, S. & Eisenhaber, F. Refinement and prediction of protein prenylation motifs. Genome Biol. 6, R55 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Maurer-Stroh, S. et al. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput. Biol. 3, e66 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sebti, S.M. Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7, 297–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Mijimolle, N. et al. Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell 7, 313–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Lerner, E.C. et al. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic ras signaling by inducing cytoplasmic accumulation of inactive ras-raf complexes. J. Biol. Chem. 270, 26802–26806 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Willumsen, B.M., Christensen, A., Hubbert, N.L., Papageorge, A.G. & Lowy, D.R. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583–586 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, S.H. et al. Caution! Analyze transcripts from conditional knockout alleles. Transgenic Res. 18, 483–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, M. et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc. Natl. Acad. Sci. USA 107, 6471–6476 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Willumsen, B.M., Norris, K., Papageorge, A.G., Hubbert, N.L. & Lowy, D.R. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 3, 2581–2585 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Butrynski, J.E., Jones, T.L., Backlund, P.S. Jr. & Spiegel, A.M. Differential isoprenylation of carboxy-terminal mutants of an inhibitory G-protein alpha-subunit: neither farnesylation nor geranylgeranylation is sufficient for membrane attachment. Biochemistry 31, 8030–8035 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Ohya, Y. et al. Yeast CAL1 is a structural and functional homologue to the DPR1 (RAM) gene involved in ras processing. J. Biol. Chem. 266, 12356–12360 (1991).

    CAS  PubMed  Google Scholar 

  54. Therrien, M. et al. KSR, a novel protein kinase required for RAS signal transduction. Cell 83, 879–888 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, J.H. et al. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proc. Natl. Acad. Sci. USA 87, 3042–3046 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Campbell, P.M. & Der, C.J. Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin. Cancer Biol. 14, 105–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. & Hancock, J.F. Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Appels, N.M.G.M., Beijnen, J.H. & Schellens, J.H.M. Development of farnesyltransferase inhibitors: a review. Oncologist 10, 565–578 (2005).

    Article  PubMed  Google Scholar 

  60. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun, J., Qian, Y., Hamilton, A.D. & Sebti, S.M. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16, 1467–1473 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Kohl, N.E. et al. Inhibition of farnesyltransferase induces regression of mammary salivary carcinomas in ras transgenic mice. Nat. Med. 1, 792–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Omer, C.A. et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res. 60, 2680–2688 (2000).

    CAS  PubMed  Google Scholar 

  64. Sebti, S.M. & Der, C.J. Searching for the elusive targets of farnesyltransferase inhibitors. Nat. Rev. Cancer 3, 945–951 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Basso, A.D., Kirschmeier, P. & Bishop, W.R. Lipid posttranslational modifications: farnesyl transferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ashar, H.R. et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J. Biol. Chem. 275, 30451–30457 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Crespo, N.C., Ohkanda, J., Yen, T.J., Hamilton, A.D. & Sebti, S.M. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J. Biol. Chem. 276, 16161–16167 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Crespo, N.C. et al. The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status. Cell Death Differ. 9, 702–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Sepp-Lorenzino, L. & Rosen, N. A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J. Biol. Chem. 273, 20243–20251 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Prendergast, G.C. Actin' up: RhoB in cancer and apoptosis. Nat. Rev. Cancer 1, 162–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, Z. et al. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974–17978 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Van Cutsem, E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 22, 1430–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rao, S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 22, 3950–3957 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Harousseau, J.L. et al. A randomized phase 3 study of tipifarnib compared with best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia in patients 70 years or older. Blood 114, 1166–1173 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Sparano, J.A. et al. Targeted inhibition of farnesyltransferase in locally advanced breast cancer: A phase I and II trial of Tipifarnib plus dose-dense doxirubicin and cyclophosphamide. J. Clin. Oncol. 24, 3013–3018 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Hamad, N.M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim, K.-H. et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7, 533–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Vogt, A., Sun, J.Z., Qian, Y.M., Hamilton, A.D. & Sebti, S.M. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21WAF1/CIP1/SDI1 in a p53-independent manner. J. Biol. Chem. 272, 27224–27229 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Sun, J. et al. The geranylgeranyltransferase I inhibitor GGTI-298 induces hypophosphorylation of retinoblastoma and partner switching of cyclin-dependent kinase inhibitors. A potential mechanism for GGTI-298 antitumor activity. J. Biol. Chem. 274, 6930–6934 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Sun, J. et al. Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-ras transgenic mice. Cancer Res. 63, 8922–8929 (2003).

    CAS  PubMed  Google Scholar 

  81. Dan, H.C. et al. Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 22, 706–715 (2004).

    Article  CAS  Google Scholar 

  82. Sjogren, A.-K. et al. GGTase-1 deficiency reduces tumor formation and improves survival in mice with K-Ras-induced lung cancer. J. Clin. Invest. 117, 1294–1304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O'Dwyer, P.J., Gallagher, M., Nguyen, B., Waddell, M.J. & Chiorean, E.G. Phase I accelerated dose-escalating safety and pharmacokinetic (PK) study of GGTI-2418, a novel geranylgeranyltransferase I inhibitor in patients with refractory solid tumors. Ann. Oncol. 21 (suppl 2), ii42 (2010).

    Google Scholar 

  84. Vogt, A. et al. Burkitt lymphoma Daudi cells contain two distinct farnesyltransferases with different divalent cation requirements. Biochemistry 34, 12398–12403 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Nigam, M., Seong, C.M., Qian, Y., Hamilton, A.D. & Sebti, S.M. Potent inhibition of human tumor p21ras farnesyltransferase by A1A2-lacking p21ras CA1A2X peptidomimetics. J. Biol. Chem. 268, 20695–20698 (1993).

    CAS  PubMed  Google Scholar 

  86. Qian, Y. et al. Design and structural requirements of potent peptidomimetic inhibitors of p21ras farnesyltransferase. J. Biol. Chem. 269, 12410–12413 (1994).

    CAS  PubMed  Google Scholar 

  87. Vogt, A. et al. A non-peptide mimetic of Ras-CAAX: selective inhibition of farnesyltransferase and Ras processing. J. Biol. Chem. 270, 660–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. McGuire, T.F. et al. CAAX peptidomimetic FTI-244 decreases platelet-derived growth factor receptor tyrosine phosphorylation levels and inhibits stimulation of phosphatidylinositol 3-kinase but not mitogen-activated protein kinase. Biochem. Biophys. Res. Commun. 214, 295–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Lerner, E.C., Qian, Y., Hamilton, A.D. & Sebti, S.M. Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J. Biol. Chem. 270, 26770–26773 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Hunt, J.T. et al. Discovery of (R)-7-cyano-2,3,4, 5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3- (phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J. Med. Chem. 43, 3587–3595 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Cox, A.D., Hisaka, M.M., Buss, J.E. & Der, C.J. Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol. Cell. Biol. 12, 2606–2615 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sinensky, M., Fantle, K. & Dalton, M. An antibody which specifically recognizes prelamin A but not mature lamin A: application to detection of blocks in farnesylation-dependent protein processing. Cancer Res. 54, 3229–3232 (1994).

    CAS  PubMed  Google Scholar 

  93. Lerner, E.C. et al. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15, 1283–1288 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Vogt, A., Qian, Y., McGuire, T.F., Hamilton, A.D. & Sebti, S.M. Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 13, 1991–1999 (1996).

    CAS  PubMed  Google Scholar 

  95. Delarue, F.L. et al. Farnesyltransferase and geranylgeranyltransferase I inhibitors upregulate RhoB expression by HDAC1 dissociation, HAT association and histone acetylation of the RhoB promoter. Oncogene 26, 633–640 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Brunner, T.B. et al. Pancreatic cancer cell radiation survival and prenyltransferase inhibition: the role of K-Ras. Cancer Res. 65, 8433–8441 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, D.-A. & Sebti, S.M. Palmitoylated cysteine 192 is required for RhoB tumor-suppressive and apoptotic activities. J. Biol. Chem. 280, 19243–19249 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Bivona, T.G. et al. PKC regulates a farnesyl-electrostatic switch on K-ras that promotes its association with Bcl-Xl on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Bivona, T.G., Quatela, S. & Philips, M.R. Analysis of Ras activation in living cells with GFP-RBD. Methods Enzymol. 407, 128–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Benetka, W., Koranda, M., Maurer-Stroh, S., Pittner, F. & Eisenhaber, F. Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo. BMC Biochem. 7, 6 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Onono, F.O. et al. A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol. Cell. Proteomics 9, 742–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nguyen, U.T. et al. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat. Chem. Biol. 5, 227–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Troutman, J.M., Roberts, M.J., Andres, D.A. & Spielmann, H.P. Tools to analyze protein farnesylation in cells. Bioconjug. Chem. 16, 1209–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Chan, L.N. et al. A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis 30, 3598–3606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Degraw, A.J. et al. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem. Biol. Drug Des. 6, 460–471 (2010).

    Article  CAS  Google Scholar 

  107. Hannoush, R.N. & Sun, J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 6, 498–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Kita, T., Brown, M.S. & Goldstein, J.L. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J. Clin. Invest. 66, 1094–1100 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  110. Berndt, N. et al. The Akt activation inhibitor TCN-P inhibits Akt phosphorylation by binding to the PH domain of Akt and blocking its recruitment to the plasma membrane. Cell Death Differ. 17, 1795–1804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH CA067771 (S.M.S) and CA098473 (S.M.S.). We thank A.D. Hamilton and his group for a wonderful and highly productive collaboration and M.A. Blaskovich and A. Kazi for their excellent suggestions. We also thank the past and present members of the Sebti lab for their contributions to this work, particularly J. Adnane, M.E. Balasis, M.A. Blaskovich, C. Bucher, P.M. Campbell, A.E. Carie, Z. Chen, N.C.Crespo, F. Delarue, S.C. Falsetti, K. Forinash, K. Jiang, A. Kazi, E.C. Lerner, T.F. McGuire, M. Nigam, S. Paquette, R. Patel, J. Sun, Y. Sun, V. Thai, A. Vogt, D. Wang, A. Tecleab, H. Yang and K. Zhu.

Author information

Authors and Affiliations

Authors

Contributions

Both N.B. and S.M.S. jointly wrote the manuscript.

Corresponding author

Correspondence to Saïd M Sebti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndt, N., Sebti, S. Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc 6, 1775–1791 (2011). https://doi.org/10.1038/nprot.2011.387

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.387

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research