Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Analysis of genomic targets reveals complex functions of MYC

Abstract

MYC is overexpressed by many human tumour types and has been shown to regulate cell functions that are required for tumorigenesis. It is not clear, however, which of its target genes mediate these effects. A series of recent studies have indicated that this could be a result of the fact that MYC binds and regulates up to 15% of all genes. Does MYC function as a widespread regulator of transcription or as a classical transcription factor that regulates a limited number of downstream targets?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MAX network.
Figure 2: The MYC, p53 and E2F effector pathways.

Similar content being viewed by others

References

  1. Dalla-Favera, R. et al. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitts lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA 79, 7837–7841 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nesbit, C. E., Tersak, J. M. & Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene 18, 3004–3016 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Blackwood, E. M. & Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Blackwood, E. M., Kretzner, L. & Eisenman, R. N. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 2, 227–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Blackwood, E. M., Luscher, B. & Eisenman, R. N. Myc and max associate in-vivo. Genes Dev. 6, 71–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Prendergast, G. C., Lawa, D. & Ziff, E. B. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Blackwell, T. K. et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13, 5216–5224 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Tokino, T. & Nakamura, Y. The role of p53-target genes in human cancer. Crit. Rev. Oncol. Hematol. 33, 1–6 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, J. & Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ohtani, K. Implication of transcription factor E2F in regulation of DNA replication. Front. Biosci. 4, D793–D804 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Berns, K., Hijmans, E. M., Koh, E., Daley, G. Q. & Bernards, R. A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts. Oncogene 19, 3330–3334 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Nikiforov, M. A. et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol. 22, 5793–5800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewis, B. C. et al. Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 60, 6178–6183 (2000).

    CAS  PubMed  Google Scholar 

  16. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Eisenman, R. N. The Max network: coordinated transcriptional regulation of cell growth and proliferation. Harvey Lect. 96, 1–32 (2000).

    PubMed  Google Scholar 

  21. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao, D. Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheiness, D. & Bishop, J. M. DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J. Virol. 31, 514–521 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Prendergast, G. C. & Ziff, E. B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251, 186–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Kato, G. J., Barrett, J., Villa-Garcia, M. & Dang, C. V. An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10, 5914–5920 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hateboer, G. et al. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl Acad. Sci. USA 90, 8489–8493 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McMahon, S. B., VanBuskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mad–Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for max that antagonizes myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Hurlin, P. J., Queva, C. & Eisenman, R. N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A. & Dang, C. V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Luo, Q., Li, J., Cenkci, B. & Kretzner, L. Autorepression of c-myc requires both initiator and E2F-binding site elements and cooperation with the p107 gene product. Oncogene 23, 1088–1097 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Izumi, H. et al. Mechanism for the transcriptional repression by c-Myc on PDGFβ-receptor. J. Cell Sci. 114, 1533–1544 (2001).

    CAS  PubMed  Google Scholar 

  45. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, Q. M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000).

    CAS  PubMed  Google Scholar 

  47. Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neiman, P. E. et al. Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc. Natl Acad. Sci. USA 98, 6378–6383 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nesbit, C. E. et al. Genetic dissection of c-myc apoptotic pathways. Oncogene 19, 3200–3212 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S., Zeller, K., Dang, C. V., Sandgren, E. P. & Lee, L. A. A strategy to identify differentially expressed genes using representational difference analysis and cDNA arrays. Anal. Biochem. 288, 141–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O'Connell, B. C. et al. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J. Biol. Chem. 278, 12563–12573 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Schuldiner, O., Shor, S. & Benvenisty, N. A computerized database-scan to identify c-MYC targets. Gene 292, 91–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Louro, I. D. et al. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res. 62, 5867–5873 (2002).

    CAS  PubMed  Google Scholar 

  56. Watson, J. D., Oster, S. K., Shago, M., Khosravi, F. & Penn, L. Z. Identifying genes regulated in a Myc-dependent manner. J. Biol. Chem. 277, 36921–36930 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, Q., He, M., Lee, N. H. & Liu, E. T. Identification of Myc-mediated death response pathways by microarray analysis. J. Biol. Chem. 277, 13059–13066 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Mai, S. & Mushinski, J. F. c-Myc-induced genomic instability. J. Environ. Pathol. Toxicol. Oncol. 22, 179–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Cheng, S. W. et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nature Genet. 22, 102–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Eisenman, R. N. Deconstructing myc. Genes Dev. 15, 2023–2030 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Gartel, A. L. & Shchors, K. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp. Cell Res. 283, 17–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol. 3, 400–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Nakamura, Y. Isolation of p53-target genes and their functional analysis. Cancer Sci. 95, 7–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bell, L. A. & Ryan, K. M. Life and death decisions by E2F-1. Cell Death Differ. 11, 137–142 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The following individuals provided helpful comments during the preparation of this review: M. Cole, C. Dang, S. Sykes and A. Norvell. This work was supported by grants to S.B.M. from the National Institutes of Health. In addition, this work was partially supported by funds from the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health. Finally, we would like to add that many other groups have contributed data that were crucial to our current discussion of MYC function. Due to space limitations, these important contributions could not be highlighted in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. McMahon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute myeloid leukaemia

Entrez Gene

CDKN1A

cyclin D2

lactate dehydrogenase

MAD

MAX

MNT

MYC

NOXA

p53

PUMA

RCL

serine hydroxymethyltransferase 1

OMIM

Burkitt's lymphoma

FURTHER INFORMATION

MYC cancer gene database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, J., Loboda, A., Showe, M. et al. Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4, 562–568 (2004). https://doi.org/10.1038/nrc1393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing