Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer in xeroderma pigmentosum and related disorders of DNA repair

Abstract

Nucleotide-excision repair diseases exhibit cancer, complex developmental disorders and neurodegeneration. Cancer is the hallmark of xeroderma pigmentosum (XP), and neurodegeneration and developmental disorders are the hallmarks of Cockayne syndrome and trichothiodystrophy. A distinguishing feature is that the DNA-repair or DNA-replication deficiencies of XP involve most of the genome, whereas the defects in CS are confined to actively transcribed genes. Many of the proteins involved in repair are also components of dynamic multiprotein complexes, transcription factors, ubiquitylation cofactors and signal-transduction networks. Complex clinical phenotypes might therefore result from unanticipated effects on other genes and proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleotide-excision repair showing the two main branches of transcription-coupled repair and global genomic repair, their convergence on a common pathway, and the main genes involved with various steps along the pathways.
Figure 2: Mechanisms by which cancer or neurodegeneration could be caused by defects in global genomic repair and bypass replication or by defects in transcription-coupled repair.

Similar content being viewed by others

References

  1. Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. J. in The Genetic Basis of Human Cancer (eds. Vogelstein, B. & Kinzler, K. W.) 245–274 (McGraw-Hill, New York, 1998).

    Google Scholar 

  2. Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    CAS  PubMed  Google Scholar 

  3. Batty, D. P. & Wood, R. W. Damage recognition in nucleotide excision repair of DNA. Gene 241, 193–204 (2000).

    CAS  PubMed  Google Scholar 

  4. Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    CAS  PubMed  Google Scholar 

  6. Balajee, A. S., Dianova, I. & Bohr, V. A. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells. Nucleic Acids Res. 27, 4476–4482 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Svejstrup, J. Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116, 447–451 (2003).

    CAS  PubMed  Google Scholar 

  8. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

    CAS  PubMed  Google Scholar 

  9. Nichols, A. F. et al. Human damage-specific DNA binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J. Biol. Chem. 275, 21422–21428 (2001).

    Google Scholar 

  10. Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cleaver, J. E., Thompson, L. H., Richardson, A. S. & States, J. C. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum. Mut. 14, 9–22 (1999).

    CAS  PubMed  Google Scholar 

  12. Itoh, T., Linn, S., Ono, T. & Yamaizumi, M. Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J. Invest. Dermatol. 114, 1022–1029 (2000).

    CAS  PubMed  Google Scholar 

  13. Tang, J. & Chu, G. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1, 601–616 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genome repair. Proc. Natl Acad. Sci. USA 96, 424–428 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5, 737–744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, W. et al. Nuclear transport of human DDB protein induced by ultraviolet light. J. Biol. Chem. 275, 21429–21434 (2000).

    CAS  PubMed  Google Scholar 

  17. Shiyanov, P. et al. The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol. Cell Biol. 19, 4935–4943 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan, T. & Chu, G. p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol. Cell Biol. 22, 3247–3254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Painter, R. B. & Cleaver, J. E. Repair replication, unscheduled DNA synthesis, and the repair of mammalian DNA. Radiat. Res. 37, 451–466 (1969).

    CAS  PubMed  Google Scholar 

  20. Shivji, M. K., Eker, A. P. & Wood, R. D. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J. Biol. Chem. 269, 22749–22757 (1994).

    CAS  PubMed  Google Scholar 

  21. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    CAS  PubMed  Google Scholar 

  22. Wood, R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81, 39–44 (1999).

    CAS  PubMed  Google Scholar 

  23. Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25, 1033–1043 (2004).

    CAS  PubMed  Google Scholar 

  24. Consortium, I. H. G. S. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Google Scholar 

  25. Boon, W. M. et al. A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering. Proc. Natl Acad. Sci. USA 101, 14972–14977 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, R. D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    CAS  PubMed  Google Scholar 

  27. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).

    CAS  PubMed  Google Scholar 

  28. Araki, M. et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global nucleotide excision repair. J. Biol. Chem. 276, 18665–18672 (2001).

    CAS  PubMed  Google Scholar 

  29. Ford, J. M. & Hanawalt, P. C. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J. Biol. Chem. 272, 28073–28080 (1997).

    CAS  PubMed  Google Scholar 

  30. Proietti De Santis, L. et al. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells. DNA Repair 1, 209–223 (2002).

    PubMed  Google Scholar 

  31. D'Errico, M. et al. Apoptosis and efficient repair of DNA damage protect human keratinocytes against UVB. Cell Death Differ. 10, 754–756 (2003).

    CAS  PubMed  Google Scholar 

  32. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl Acad. Sci. USA 99, 4239–4244 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, L. J., Jiang, H. & Rangel, K. M. RNA polymerase II stalled on a DNA template during transcription elongation is ubiquitinated and the ubiquitination facilitates displacement of the elongation complex. Int. J. Oncol. 22, 683–689 (2003).

    CAS  PubMed  Google Scholar 

  35. Tremeau-Bravard, A., Riedl, T., Egly, J. M. & Dahmus, M. E. Fate of RNA polymerase II stalled at a cisplatin lesion. J. Biol. Chem. 279, 7751–7759 (2004).

    CAS  PubMed  Google Scholar 

  36. Lommel, L., Bucheli, M. E. & Sweder, K. S. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc. Natl Acad. Sci. USA 97, 9088–9092 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, K. B. & Sharp, P. A. Transcription-dependent polyubiquitination of RNA polymerase II requires lysine 63 of ubiquitin. Biochemistry 43, 15223–15229 (2004).

    CAS  PubMed  Google Scholar 

  38. D'Errico, M. et al. Differential role of transcription-coupled repair in UVB-induced response of human fibroblasts and keratinocytes. Cancer Res. 65, 432–438 (2005).

    CAS  PubMed  Google Scholar 

  39. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for u. v. light-induced apoptosis. Oncogene 13, 823–831 (1996).

    CAS  PubMed  Google Scholar 

  40. Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hara, R., Selby, C. P., Liu, M., Price, D. H. & Sancar, A. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J. Biol. Chem. 274, 24779–24786 (1999).

    CAS  PubMed  Google Scholar 

  42. Shilatifard, A. Factors regulating the transcriptional elongation activity of RNA polymerase II. FASEB J. 12, 1437–1446 (1998).

    CAS  PubMed  Google Scholar 

  43. Beerens, N., Hoeijmakers, J. H., Kanaar, R., Vermeulen, W. & Wyman, C. The CSB protein actively wraps DNA. J. Biol. Chem. 280, 4722–4729 (2005).

    CAS  PubMed  Google Scholar 

  44. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    CAS  PubMed  Google Scholar 

  45. Kamiuchi, S. et al. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc. Natl Acad. Sci. USA 99, 201–206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. McDowell, M., Nguyen, T. & Cleaver, J. E. A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis 8, 155–161 (1993).

    CAS  PubMed  Google Scholar 

  47. Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44, 891–920 (2001).

    CAS  PubMed  Google Scholar 

  48. Mondello, C. et al. Molecular analysis of the XP-D-gene in Italian families with patients affected by trichothiodystrophy and xeroderma pigmentosum group D. Mutat. Res. 314, 159–165 (1994).

    CAS  PubMed  Google Scholar 

  49. Broughton, B. C., Steingrimsdottir, H., Weber, C. A. & Lehmann, A. R. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nature Genet. 7, 189–194 (1994).

    CAS  PubMed  Google Scholar 

  50. Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004).

    CAS  PubMed  Google Scholar 

  51. Clarkson, S. G. The XPG story. Biochimie 85, 1113–1121 (2003).

    CAS  PubMed  Google Scholar 

  52. Gaillard, P. H. & Wood, R. D. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res. 29, 872–879 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mone, M. J. et al. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair. Proc. Natl Acad. Sci. USA 101, 15933–15937 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Niedernhofer, L. J. et al. The structure-specific endonuclease Ercc1–Xpf is required to resolve DNA interstrand crosslink-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, X. D. et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 12, 1498–1498 (2003).

    Google Scholar 

  56. Thorel, F. et al. Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol. Cell. Biol. 24, 10670–10680 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sijbers, A. M. et al. Homozygous R488W point mutation in the XPF gene of a patient with xeroderma pigmentosum and late-onset neurologic disease. J. Invest. Dermatol. 110, 832–836 (1998).

    CAS  PubMed  Google Scholar 

  58. Tian, M., Shinkura, R., Shinkura, N. & Alt, F. W. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24, 1200–1205 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Toueille, M. & Hubscher, U. Regulation of the DNA replication fork: a way to fight genomic instability. Chromosoma 113, 113–125 (2004).

    CAS  PubMed  Google Scholar 

  60. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cleaver, J. E. Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J. Invest. Dermatol. 58, 124–128 (1972).

    CAS  PubMed  Google Scholar 

  62. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 264, 263–265 (1999).

    Google Scholar 

  63. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    CAS  PubMed  Google Scholar 

  64. Kannouche, P. et al. Localization of DNA polymerases μ and ι to the replication machinery is tightly coordinated in human cells. EMBO J. 22, 1223–1233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase μ with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    CAS  PubMed  Google Scholar 

  66. Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase ι. Nature 419, 944–947 (2002).

    CAS  PubMed  Google Scholar 

  67. Franklin, A., Milburn, P. J., Blanden, R. V. & Steele, E. J. Human DNA polymerase η, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol. Cell Biol. 82, 219–225 (2004).

    CAS  PubMed  Google Scholar 

  68. Zeng, X. et al. DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001).

    CAS  Google Scholar 

  69. Zeng, X., Negrete, G. A., Kasmer, C., Yang, W. W. & Gearhart, P. J. Absence of DNA polymerase η reveals targeting of C mutations on the nontranscribed strand in immunoglobulin switch regions. J. Exp. Med. 199, 917–924 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkaria, J. N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 4375–4382 (1999).

    CAS  PubMed  Google Scholar 

  72. Cleaver, J. E. et al. Increased UV sensitivity and chromosomal instability related to p53 function in the xeroderma pigmentosum variant. Cancer Res. 59, 1102–1108 (1999).

    CAS  PubMed  Google Scholar 

  73. Laposa, R. R., Feeney, L. & Cleaver, J. E. Recapitulation of the cellular xeroderma pigmentosum-variant phenotype using short interfering RNA for DNA polymerase H. Cancer Res. 63, 3909–3912 (2003).

    CAS  PubMed  Google Scholar 

  74. Limoli, C. L., Giedzinski, E., Morgan, W. F. & Cleaver, J. E. Polymerase η deficiency in the XP variant uncovers an overlap between the S phase checkpoint and double strand break repair. Proc. Natl Acad. Sci. USA 97, 7939–7946 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Limoli, C. L., Giedzinski, E., Bonner, W. M. & Cleaver, J. E. UV-induced replication arrest in the xeroderma pigmentosum variant leads to double strand breaks, γ-H2Ax formation, and Mre11 relocalization. Proc. Natl Acad. Sci. USA 99, 233–238 (2002).

    CAS  PubMed  Google Scholar 

  76. Lee, S., Cavallo, L. & Griffith, J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J. Biol. Chem. 272, 7532–7539 (1997).

    CAS  PubMed  Google Scholar 

  77. Jayaraman, J. & Prives, C. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81, 1021–1029 (1995).

    CAS  PubMed  Google Scholar 

  78. Dutta, A., Ruppert, J. M., Aster, J. C. & Winchester, E. Inhibition of DNA replication factor RPA by p53. Nature 365, 79–82 (1993).

    CAS  PubMed  Google Scholar 

  79. Buchhop, S. et al. Interaction of p53 with the human rad51 protein. Nucleic Acids Res. 25, 3868–3874 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Limoli, C. L., Giedzinski, E. & Cleaver, J. E. Alternative recombination pathways in UV-irradiated XP Variant cells. Oncogene 7 Mar 2005 (1038/sj.onc.1208515).

  81. Neuspikel, T. & Hanawalt, P. C. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol. 20, 1562–1570 (2000).

    Google Scholar 

  82. Wang, Q. E. et al. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol. Carcinog. 42, 53–64 (2005).

    PubMed  Google Scholar 

  83. Welsh, C. et al. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer 110, 352–361 (2004).

    CAS  PubMed  Google Scholar 

  84. Thakur, M. et al. DNA polymerase η undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination. Genes Chromosom. Cancer 32, 222–235 (2001).

    CAS  PubMed  Google Scholar 

  85. Barrett, S. F., Robbins, J. H. Tarone, R. E. & Kraemer, K. H. Evidence for defective repair of cyclobutane dimers with normal repair of other photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells. Mutat. Res. 255, 281–291 (1991).

    CAS  PubMed  Google Scholar 

  86. Parris, C. H. & K. H. Kraemer . Ultraviolet-light induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc. Natl Acad. Sci. USA 90, 7260–7264 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    CAS  PubMed  Google Scholar 

  88. Spatz, A., Giglia-Mari, G., Benhamou, S. & Sarasin, A. Association between DNA repair-deficiency and high level of p53 mutations in melanoma of xeroderma pigmentosum. Cancer Res. 61, 2480–2486 (2001).

    CAS  PubMed  Google Scholar 

  89. Bodak, N. et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc. Natl Acad. Sci. USA 96, 5117–5122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuraoka, I. et al. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc. Natl Acad. Sci. USA 97, 3832–3837 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Weeda, G. et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 25, 2274–2283 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    CAS  PubMed  Google Scholar 

  93. Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C. & Egly, J. -M. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARα. Cell 109, 125–135 (2002).

    CAS  PubMed  Google Scholar 

  94. Taylor, E. M. et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl Acad. Sci. USA 94, 8658–8663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11, 1635–1646 (2003).

    CAS  PubMed  Google Scholar 

  96. Viprakasit, V. et al. Mutations in the general transcription factor TFIIH result in β-thalassaemia in individuals with trichothiodystrophy. Hum. Mol. Genet. 10, 2797–2802 (2001).

    CAS  PubMed  Google Scholar 

  97. Cline, S. D., Riggins, J. N., Tornaletti, S., Marnett, L. J. & Hanawalt, P. C. Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc. Natl Acad. Sci. USA 101, 7275–7280 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hayashi, M. et al. Oxidative stress and disturbed glutamate transport in hereditary nucleotide repair disorders. J. Neuropathol. Exp. Neurol. 60, 350–356 (2001).

    CAS  PubMed  Google Scholar 

  99. de Waard, H. et al. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair 2, 13–25 (2003).

    CAS  PubMed  Google Scholar 

  100. Chen, P. et al. Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice. J. Neurosci. Res. 23, 11453–11460 (2003).

    CAS  Google Scholar 

  101. Sun, X. Z., Harada, Y. N., Takahashi, S., Shiomi, N. & Shiomi, T. Purkinje cell degeneration in mice lacking the xeroderma pigmentosum group G gene. J. Neurosci. Res. 64, 348–354 (2001).

    CAS  PubMed  Google Scholar 

  102. Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003).

    CAS  PubMed  Google Scholar 

  103. Lopez Salon, M., Morelli, L., Castano, E. M., Soto, E. F. & Pasquini, J. M. Defective ubiquitination of cerebral proteins in Alzheimer's disease. J. Neurosci. Res. 62, 302–310 (2000).

    CAS  PubMed  Google Scholar 

  104. von Coelln, R., Dawson, V. L. & Dawson, T. M. Parkin-associated Parkinson's disease. Cell Tissue Res. 318, 175–184 (2004).

    PubMed  Google Scholar 

  105. Friedberg, E. C., Meira, L. B. & Cheo, D. L. Database of mouse strains carrying targeted mutations in genes affecting cellular responses ot DNA damage. Version 2. Mutat. Res. 407, 217–226 (1998).

    CAS  PubMed  Google Scholar 

  106. Itoh, T., Cado, D., Kamide, R. & Linn, S. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc. Natl Acad. Sci. USA 101, 2052–2057 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cheo, D. L. et al. Ultraviolet B radiation-induced skin cancer in mice defective in the Xpc, Trp53, and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res. 60, 1580–1584 (2000).

    CAS  PubMed  Google Scholar 

  108. Berg, R. J. et al. Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice. Cancer Res. 60, 2858–2863 (2000).

    CAS  PubMed  Google Scholar 

  109. van der Horst, G. T. et al. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair 1, 143–157 (2002).

    CAS  PubMed  Google Scholar 

  110. Berg, R. J. W., Vries, A. D., Steeg, H. V. & Gruijl, F. R. D. Relative susceptibilities of XPA knockout mice and their heterozygous and wild-type littermates to UVB-induced skin cancer. Cancer Res. 57, 581–584 (1997).

    CAS  PubMed  Google Scholar 

  111. De Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995).

    CAS  PubMed  Google Scholar 

  112. Tanaka, K. et al. UV-induced skin carcinogenesis in xeroderma pigmentosum group A (XPA) gene-knockout mice with nucleotide excision repair-deficiency. Mutat. Res. 477, 31–40 (2001).

    CAS  PubMed  Google Scholar 

  113. Murai, M. et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc. Natl Acad. Sci. USA 98, 13379–13384 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).

    CAS  PubMed  Google Scholar 

  115. Shiomi, N. et al. Severe growth retardation and short life-span of double mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair 4, 351–357 (2005).

    CAS  PubMed  Google Scholar 

  116. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998).

    CAS  PubMed  Google Scholar 

  117. Mitchell, J. R., Hoeijmakers, J. H. & Niedernhofer, L. J. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr. Opin. Cell Biol. 15, 232–240 (2003).

    CAS  PubMed  Google Scholar 

  118. Shiomi, N. et al. Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol. Cell. Biol. 24, 3712–3719 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice. EMBO J. 24, 861–871 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Delbos, F. et al. Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 201, 1191–1196 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. McDonald, J. P. et al. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 198, 635–643 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Osterod, M. et al. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 21, 8232–8239 (2002).

    CAS  PubMed  Google Scholar 

  123. Tebbs, R. S. et al. Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev. Biol. 208, 513–529 (1999).

    CAS  PubMed  Google Scholar 

  124. Tebbs, R. S., Thompson, L. H. & Cleaver, J. E. Rescue of Xrcc1 knockout mouse embryo lethality by transgene complementation. DNA Repair 2, 1405–1417 (2003).

    CAS  PubMed  Google Scholar 

  125. Yang, Y. & Herrup, K. Loss of neuronal cell cycle control in ataxia-telangiectasia:a unified disease mechanism. J. Neuroscience 25, 2522–2529 (2005).

    CAS  Google Scholar 

  126. Rangarajan, A., Hong, H. J., Gifford, A. & Weinberg, R. A. Species and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–183 (2004).

    CAS  PubMed  Google Scholar 

  127. Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    CAS  PubMed  Google Scholar 

  128. Marchetto, M. C., Muotri, A. R., Burns, D. K., Friedberg, E. C. & Menck, C. F. Gene transduction in skin cells: preventing cancer in xeroderma pigmentosum mice. Proc. Natl Acad. Sci. USA 101, 17759–17764 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cleaver, J. E., Volpe, J. P. G., Charles, W. C. & Thomas, G. H. Prenatal diagnosis of xeroderma pigmentosum and Cockayne syndrome. Prenat. Diagn. 14, 921–928 (1994).

    CAS  PubMed  Google Scholar 

  130. Yarosh, D. et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet 357, 926–929 (2001).

    CAS  PubMed  Google Scholar 

  131. Kraemer, K. H., DiGiovanna, J. J. & Peck, G. L. Chemoprevention of skin cancer in xeroderma pigmentosum. J. Dermatol. 19, 715–718 (1992).

    CAS  PubMed  Google Scholar 

  132. Cleaver, J. E. Defective repair replication in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    CAS  PubMed  Google Scholar 

  133. Daughdrill, G. W. et al. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Res. 31, 4176–4183 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action. a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    CAS  PubMed  Google Scholar 

  135. Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68–84 (1992).

    CAS  PubMed  Google Scholar 

  136. Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410–15415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Colella, S., Nardo, T., Botta, E., Lehmann, A. R. & Stefanini, M. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis-cacchione variant of xeroderma pigmentosum. Hum. Mol. Genet. 9, 1171–1175 (2000).

    CAS  PubMed  Google Scholar 

  138. Lommel, L., Chen, L., Madura, K. & Sweder, K. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res. 28, 4839–4845 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Semple, C. A., Group., R. G. & Members., G. The comparative proteomics of ubiquitination in mouse. Genome Res. 13, 1389–1394 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hochstrasser, M. Ubiquitin-dependent protein degradation. Ann. Rev. Genet. 30, 403–409 (1996).

    Google Scholar 

  141. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148 (2000).

    CAS  PubMed  Google Scholar 

  142. Chen, Z., Zhang, Y., Douglas, L. & Zhou, P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J. Biol. Chem. 276, 48175–48182 (2001).

    CAS  PubMed  Google Scholar 

  143. Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998).

    CAS  PubMed  Google Scholar 

  144. Chen, L., Shinde, U., Ortolan, T. G. & Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2, 933–938 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gillette, T. G. et al. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev. 15, 1528–1539 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    CAS  PubMed  Google Scholar 

  147. van Laar, T., van der Eb, A. J. & Terleth, C. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat. Res. 499, 53–61 (2002).

    CAS  PubMed  Google Scholar 

  148. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  149. Steitz, T. A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398 (1999).

    CAS  PubMed  Google Scholar 

  150. Ohmori, H. et al. The Y-family of DNA polymerases. Mol. Cell 8, 7–8 (2001).

    CAS  PubMed  Google Scholar 

  151. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion synthesis. Mol. Cell 8, 417–426 (2001).

    CAS  PubMed  Google Scholar 

  152. McCulloch, S. D. et al. Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity. Nature 428, 97–100 (2004).

    CAS  PubMed  Google Scholar 

  153. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000).

    CAS  PubMed  Google Scholar 

  154. Matsuda, T., Bebenek, K., Masutani, C., Hanoaka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase η. Nature 404, 1011–1013 (2000).

    CAS  PubMed  Google Scholar 

  155. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    CAS  PubMed  Google Scholar 

  156. Woodgate, R. Evolution of the two–step model for UV-mutagenesis. Mutat. Res. 485, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  157. Wang, Y. C., Maher, V. M. & McCormick, J. J. Xeroderma pigmentosum variant cells are less likely than normal cells to incorporate dAMP opposite photoproducts during replication of UV-irradiated plasmids. Proc. Natl Acad. Sci. USA 88, 7810–7814 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Cleaver, J. E. Sensitivity of excision repair in normal human, xeroderma pigmentosum variant and Cockayne's syndrome fibroblasts to inhibition by cytosine arabinoside. J. Cell Physiol. 108, 163–173 (1981).

    CAS  PubMed  Google Scholar 

  159. Dingman, T. & Kakunaga, T. DNA strand breaking and rejoining in response to ultraviolet light in normal and xeroderma pigmentosum cells. Int. J. Radiat. Biol. 30, 55–66 (1976).

    CAS  Google Scholar 

  160. Cleaver, J. E. & Mitchell, D. L. in Cancer Medicine Vol. 1 (eds. Kufe, D. W. et al.) 303–311 (BC Becher Inc., Hamilton, Ontario, 2003).

    Google Scholar 

Download references

Acknowledgements

This article was written with support from a grant from the National Institutes of Environmental Health Sciences, and generous gifts from the Xeroderma Pigmentosum Society and the Luke O'Brien Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CEN2

CSA

CSB

DDB1

DDB2

HR23B

p53

PCNA

RAD51

XPA

XPB

XPC

XPD

XPF

OMIM

XP-A

XP-B

XP-C

XP-D

XP-E

XP-F

XP-G

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleaver, J. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5, 564–573 (2005). https://doi.org/10.1038/nrc1652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing