Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgical ventricular restoration for the treatment of heart failure

Abstract

Heart failure (HF) is an emerging epidemic affecting 15 million people in the USA and Europe. HF-related mortality was unchanged between 1995 and 2009, despite a decrease in the incidence of cardiovascular disease. Conventional explanations include an aging population and improved treatment of acute myocardial infarction and HF. An adverse relationship between structure and function is the central theme in patients with systolic dysfunction. The normal elliptical ventricular shape becomes spherical in ischemic, valvular, and nonischemic dilated cardiomyopathy. Therapeutic decisions should be made on the basis of ventricular volume rather than ejection fraction. When left ventricular end-systolic volume index exceeds 60 ml/m2, medical therapy, CABG surgery, and mitral repair have limited benefit. This form–function relationship can be corrected by surgical ventricular restoration (SVR), which returns the ventricle to a normal volume and shape. Consistent early and late benefits in the treatment of ischemic dilated cardiomyopathy with SVR have been reported in >5,000 patients from various international centers. The prospective, randomized STICH trial did not confirm these findings and the reasons for this discrepancy are examined in detail. Future surgical options for SVR in nonischemic and valvular dilated cardiomyopathy, and its integration with left ventricular assist devices and cell therapy, are described.

Key Points

  • Heart failure with systolic dysfunction is caused by ventricular dilatation, in which the natural elliptical shape of the heart becomes spherical

  • Ventricular dilatation alters the relationship between structure and function by compromising helical fiber orientation, whereby the oblique fibers become more-transversely orientated leading to reduced myocyte function

  • Management decisions should be made on the basis of ventricular volume rather than ejection fraction, although the value of volume measurement has not been universally accepted in ischemic cardiomyopathy

  • In ischemic disease, surgical therapy addresses the 'triple V' of vessel, valve, and ventricle in concert, rather than separately

  • Effectiveness of surgical ventricular restoration was demonstrated in >5,000 patients and is recommended in European guidelines, thereby contradicting the STICH trial conclusions; the reasons for this discrepancy are fully discussed

  • Future indications for surgical ventricular restoration might include nonischemic cardiomyopathy, valvular heart disease, and in conjunction with ventricular assist devices or cell therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Causes of DCM with a unified spherical cardiac form.
Figure 2: Effects of left ventricular dilatation on heart failure and death.
Figure 3: Myocardial ventricular fiber orientation.
Figure 4: Ventricular remodeling after myocardial infarction.
Figure 5: Mitral valve and ventricle connections.
Figure 6: Surgical ventricular restoration.
Figure 7: Steps in the surgical ventricular restoration procedure.
Figure 8: Changes in left ventricular architecture after SVR.
Figure 9: Percentage left ventricular volume reduction with surgical ventricular reconstruction.

Similar content being viewed by others

References

  1. Braunwald, E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N. Engl. J. Med. 337, 1360–1369 (1997).

    CAS  PubMed  Google Scholar 

  2. Hunt, S. A. et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol. 53, e1–e90 (2009).

    PubMed  Google Scholar 

  3. Remme, W. J. & Swedberg, K. for the Task Force for the Diagnosis and Treatment of Chronic Heart Failure, European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 22, 1527–1560 (2001).

    CAS  PubMed  Google Scholar 

  4. Roger, V. L. et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    PubMed  Google Scholar 

  5. Mosterd, A. et al. Prevalence of heart failure and left ventricular dysfunction in the general population; The Rotterdam Study. Eur. Heart J. 20, 447–455 (1999).

    CAS  PubMed  Google Scholar 

  6. Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057–2062 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).

    PubMed  Google Scholar 

  8. Bursi, F. et al. Systolic and diastolic heart failure in the community. JAMA 296, 2209–2216 (2006).

    CAS  PubMed  Google Scholar 

  9. O'Connell, J. B. The economic burden of heart failure. Clin. Cardiol. 23 (3 Suppl.), III6–III10 (2000).

    CAS  PubMed  Google Scholar 

  10. Lehmann, C. A. Economic Benefits of e-Technology in Managing Congestive Heart Failure. American Association of Homes and Services for the Aging. LeadingAge [online], (2005).

    Google Scholar 

  11. MacIntyre, K. et al. Evidence of improving prognosis in heart failure: trends in case fatality in 66,547 patients hospitalized between 1986 and 1995. Circulation 102, 1126–1131 (2000).

    CAS  PubMed  Google Scholar 

  12. Gheorghiade, M. & Bonow, R. O. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97, 282–289 (1998).

    CAS  PubMed  Google Scholar 

  13. Mehta, P. A. & Cowie, M. R. Gender and heart failure: a population perspective. Heart 92 (Suppl. 3), iii14–iii18 (2006).

    PubMed  PubMed Central  Google Scholar 

  14. Dor, V., Sabatier, M., Montiglio, F., Civaia, F. & DiDonato, M. Endoventricular patch reconstruction of ischemic failing ventricle. A single center with 20 years experience. advantages of magnetic resonance imaging assessment. Heart Fail. Rev. 9, 269–286 (2004).

    CAS  PubMed  Google Scholar 

  15. Suma, H., Tanabe, H., Uejima, T., Isomura, T. & Horii, T. Surgical ventricular restoration combined with mitral valve procedure for endstage ischemic cardiomyopathy. Eur. J. Cardiothorac. Surg. 36, 280–284 (2009).

    PubMed  Google Scholar 

  16. Dor, V., Civaia, F., Alexandrescu, C. & Montiglio, F. The post-myocardial infarction scarred ventricle and congestive heart failure: the pre-eminence of magnetic resonance imaging for preoperative, intraoperative, and postoperative assessment. J. Thorac. Cardiovasc. Surg. 136, 1405–1412 (2008).

    PubMed  Google Scholar 

  17. Menicanti, L. et al. Surgical therapy for ischemic heart failure: single-center experience with surgical anterior ventricular restoration. J. Thorac. Cardiovasc. Surg. 134, 433–441 (2007).

    PubMed  Google Scholar 

  18. O'Neill, J. O. et al. The impact of left ventricular reconstruction on survival in patients with ischemic cardiomyopathy. Eur. J. Cardiothorac. Surg. 30, 753–759 (2006).

    PubMed  Google Scholar 

  19. Adams, J. D. et al. Does preoperative ejection fraction predict operative mortality with left ventricular restoration? Ann. Thorac. Surg. 82, 1715–1719 (2006).

    PubMed  Google Scholar 

  20. Schreuder, J. J. et al. Acute decrease of left ventricular mechanical dyssynchrony and improvement of contractile state and energy efficiency after left ventricular restoration. J. Thorac. Cardiovasc. Surg. 129, 138–145 (2005).

    PubMed  Google Scholar 

  21. ten Brinke, E. A. et al. Long-term effects of surgical ventricular restoration with additional restrictive mitral annuloplasty and/or coronary artery bypass grafting on left ventricular function: six-month follow-up by pressure-volume loops. J. Thorac. Cardiovasc. Surg. 140, 1338–1344 (2010).

    PubMed  Google Scholar 

  22. Yamaguchi, A., Adachi, H., Kawahito, K., Murata, S. & Ino, T. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy. Ann. Thorac. Surg. 79, 456–461 (2005).

    PubMed  Google Scholar 

  23. Mickleborough, L. L., Merchant, N., Ivanov, J., Rao, V. & Carson, S. Left ventricular reconstruction: early and late results. J. Thorac. Cardiovasc. Surg. 128, 27–37 (2004).

    PubMed  Google Scholar 

  24. Athanasuleas, C. L. et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J. Am. Coll. Cardiol. 44, 1439–1445 (2004).

    PubMed  Google Scholar 

  25. Jones, R. H. et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N. Engl. J. Med. 360, 1705–1717 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolognese, L. et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106, 2351–2357 (2002).

    PubMed  Google Scholar 

  27. Gaudron, P., Eilles, C., Kugler, I. & Ertl, G. Progressive left ventricular dysfunction and remodelling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87, 755–763 (1993).

    CAS  PubMed  Google Scholar 

  28. Klein, M. D., Herman, M. V. & Gorlin, R. A hemodynamic study of left ventricular aneurysm. Circulation 35, 614–630 (1967).

    CAS  PubMed  Google Scholar 

  29. Mann, D. L., Bogaev, R. & Buckberg, G. D. Cardiac remodelling and myocardial recovery: lost in translation? Eur. J. Heart Fail. 12, 789–796 (2010).

    PubMed  Google Scholar 

  30. Vasan, R. S., Larson, M. G., Benjamin, E. J., Evans, J. C. & Levy, D. Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N. Engl. J. Med. 336, 1350–1355 (1997).

    CAS  PubMed  Google Scholar 

  31. White, H. D. et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51 (1987).

    CAS  PubMed  Google Scholar 

  32. Bockeria, L., Gorodkov, A., Dorofeev, A. & Alshibaya, M. for the RESTORE Group. Left ventricular geometry reconstruction in ischemic cardiomyopathy patients with predominantly hypokinetic left ventricle. Eur. J. Cardiothorac. Surg. 29 (Suppl. 1), S251–S258 (2006).

    PubMed  Google Scholar 

  33. McManus, D. D. et al. Prognostic value of left ventricular end-systolic volume index as a predictor of heart failure hospitalization in stable coronary artery disease: data from the Heart and Soul Study. J. Am. Soc. Echocardiogr. 22, 190–197 (2009).

    PubMed  Google Scholar 

  34. Migrino, R. Q. et al. End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I Angiographic Investigators. Circulation 96, 116–121 (1997).

    CAS  PubMed  Google Scholar 

  35. Carabello, B. A. The changing unnatural history of valvular regurgitation. Ann. Thorac. Surg. 53, 191–199 (1992).

    CAS  PubMed  Google Scholar 

  36. Detaint, D. et al. Congestive heart failure complicating aortic regurgitation with medical and surgical management: a prospective study of traditional and quantitative echocardiographic markers. J. Thorac. Cardiovasc. Surg. 136, 1549–1557 (2008).

    PubMed  Google Scholar 

  37. Bonow, R. O., Rosing, D. R., Kent, K. M. & Epstein, S. E. Timing of operation for chronic aortic regurgitation. Am. J. Cardiol. 50, 325–336 (1982).

    CAS  PubMed  Google Scholar 

  38. Suri, R. M. et al. Recovery of left ventricular function after surgical correction of mitral regurgitation caused by leaflet prolapse. J. Thorac. Cardiovasc. Surg. 137, 1071–1076 (2009).

    PubMed  Google Scholar 

  39. Clemente, C. D. Anatomy: A Regional Atlas of the Human Body, 5th edn (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  40. Moore, K. L. & Dalley, A. F. Clinically Oriented Anatomy, 5th edn (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  41. Torrent-Guasp, F. et al. Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J. Thorac. Cardiovasc. Surg. 122, 389–392 (2001).

    CAS  PubMed  Google Scholar 

  42. Bogaert, J. & Rademakers, F. E. Regional nonuniformity of normal adult human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 280, H610–H620 (2001).

    CAS  PubMed  Google Scholar 

  43. Buckberg, G., Hoffman, J. I., Mahajan, A., Saleh, S. & Coghlan, C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571–2587 (2008).

    PubMed  Google Scholar 

  44. Sallin, E. A. Fiber orientation and ejection fraction in the human ventricle. Biophys. J. 9, 954–964 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mann, D. L. & Bristow, M. R. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111, 2837–2849 (2005).

    PubMed  Google Scholar 

  46. Mann, D. L. Mechanisms and models in heart failure: a combinatorial approach. Circulation 100, 999–1008 (1999).

    CAS  PubMed  Google Scholar 

  47. De Luca, G., Suryapranata, H., Ottervanger, J. P. & Antman, E. M. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation 109, 1223–1225 (2004).

    PubMed  Google Scholar 

  48. Centurión, O. A. The open artery hypothesis: beneficial effects and long-term prognostic importance of patency of the infarct-related coronary artery. Angiology 58, 34–44 (2007).

    PubMed  Google Scholar 

  49. Babuty, D. & Lab, M. J. Mechanoelectric contributions to sudden cardiac death. Cardiovasc. Res. 50, 270–279 (2001).

    CAS  PubMed  Google Scholar 

  50. Mahrholdt, H. et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease. J. Am. Coll. Cardiol. 42, 505–512 (2003).

    PubMed  Google Scholar 

  51. Dor, V. et al. Efficacy of endoventricular patch plasty in large postinfarction akinetic scar and severe left ventricular dysfunction: comparison with a series of large dyskinetic scars. J. Thorac. Cardiovasc. Surg. 116, 50–59 (1998).

    CAS  PubMed  Google Scholar 

  52. St John Sutton, M. et al. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 107, 2577–2582 (2003).

    PubMed  Google Scholar 

  53. Di Donato, M., Sabatier, M., Dor, V. & Buckberg, G. D. for the RESTORE Group. Ventricular arrhythmias after LV remodelling: surgical ventricular restoration or ICD? Heart Fail. Rev. 9, 299–306 (2004).

    CAS  Google Scholar 

  54. Braun, J. et al. Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann. Thorac. Surg. 85, 430–436 (2008).

    PubMed  Google Scholar 

  55. De Bonis, M. et al. Recurrence of mitral regurgitation parallels the absence of left ventricular reverse remodeling after mitral repair in advanced dilated cardiomyopathy. Ann. Thorac. Surg. 85, 932–939 (2008).

    PubMed  Google Scholar 

  56. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    CAS  PubMed  Google Scholar 

  57. Elefteriades, J. & Edwards, R. Coronary bypass in left heart failure. Semin. Thorac. Cardiovasc. Surg. 14, 125–132 (2002).

    PubMed  Google Scholar 

  58. Vanoverschelde, J. L. et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am. J. Cardiol. 85, 1432–1439 (2000).

    CAS  PubMed  Google Scholar 

  59. Louie, H. W. et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation 84, III290–III295 (1991).

    CAS  PubMed  Google Scholar 

  60. Yamaguchi, A. et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann. Thorac. Surg. 65, 434–438 (1998).

    CAS  PubMed  Google Scholar 

  61. Bax, J. J. et al. Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation 110 (Suppl. 1), II18–II22 (2004).

    PubMed  Google Scholar 

  62. Bolling, S. F. Mitral reconstruction in cardiomyopathy. J. Heart Valve Dis. 11 (Suppl. 1), S26–S31 (2002).

    PubMed  Google Scholar 

  63. Ciarka, A. et al. Predictors of mitral regurgitation recurrence in patients with heart failure undergoing mitral valve annuloplasty. Am. J. Cardiol. 106, 395–401 (2010).

    PubMed  Google Scholar 

  64. Crabtree, T. D. et al. Recurrent mitral regurgitation and risk factors for early and late mortality after mitral valve repair for functional ischemic mitral regurgitation. Ann. Thorac. Surg. 85, 1537–1542 (2008).

    PubMed  Google Scholar 

  65. Benedetto, U. et al. Does combined mitral valve surgery improve survival when compared to revascularization alone in patients with ischemic mitral regurgitation? A meta-analysis on 2479 patients. J. Cardiovasc. Med. (Hagerstown) 10, 109–114 (2009).

    Google Scholar 

  66. Mihaljevic, T. et al. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J. Am. Coll. Cardiol. 49, 2191–2201 (2007).

    PubMed  Google Scholar 

  67. Wu, A. H. et al. Impact of mitral valve annuloplasty on mortality risk in patients with mitral regurgitation and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 45, 381–387 (2005).

    PubMed  Google Scholar 

  68. Calafiore, A. M. et al. Mitral valve surgery for chronic ischemic mitral regurgitation. Ann. Thorac. Surg. 77, 1989–1997 (2004).

    PubMed  Google Scholar 

  69. Akar, A. R. et al. Mitral valve relpair and revascularization for ischemic mitral regurgitation: predictors of operative mortality and survival. J. Heart Valve Dis. 11, 793–800 (2002).

    PubMed  Google Scholar 

  70. Spoor, M. T., Geltz, A. & Bolling, S. F. Flexible versus nonflexible mitral valve rings for congestive heart failure: differential durability of repair. Circulation 114 (1 Suppl.), I67–I71 (2006).

    PubMed  Google Scholar 

  71. Hvass, U. & Joudinaud, T. The papillary muscle sling for ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 139, 418–423 (2010).

    PubMed  Google Scholar 

  72. Buffolo, E., Branco, J. N. & Catani, R. for the RESTORE Group. End-stage cardiomyopathy and secondary mitral insufficiency surgical alternative with prosthesis implant and left ventricular restoration. Eur. J. Cardiothorac. Surg. 29 (Suppl. 1), S266–S271 (2006).

    PubMed  Google Scholar 

  73. Di Donato, M. et al. Regional myocardial performance of non-ischaemic zones remote from anterior wall left ventricular aneurysm. Effects of aneurysmectomy. Eur. Heart J. 16, 1285–1292 (1995).

    CAS  PubMed  Google Scholar 

  74. Cooley, D. A., Frazier, O. H., Duncan, J. M., Reul, G. J. & Krajcer, Z. Intracavitary repair of ventricular aneurysm and regional dyskinesia. Ann. Surg. 215, 417–423 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Suma, H. for the RESTORE Group. Left ventriculoplasty for nonischemic dilated cardiomyopathy. Semin. Thorac. Cardiovasc. Surg. 13, 514–521 (2001).

    CAS  PubMed  Google Scholar 

  76. Isomura, T., Horii, T., Suma, H. & Buckberg, G. D. for the RESTORE Group. Septal anterior ventricular exclusion operation (Pacopexy) for ischemic dilated cardiomyopathy: treat form not disease. Eur. J. Cardiothorac. Surg. 29, S245–S250 (2006).

    PubMed  Google Scholar 

  77. Isomura, T. et al. Volume reduction rate by surgical ventricular restoration determines late outcome in ischaemic cardiomyopathy. Eur. J. Heart Fail. 13, 423–431 (2011).

    PubMed  Google Scholar 

  78. Walker, W. E. et al. Techniques and results of ventricular aneurysmectomy with emphasis on anteroseptal repair. J. Thorac. Cardiovasc. Surg. 76, 824–831 (1978).

    CAS  PubMed  Google Scholar 

  79. Jatene, A. D. Left ventricular aneurysmectomy. Resection or reconstruction. J. Thorac. Cardiovasc. Surg. 89, 321–331 (1985).

    CAS  PubMed  Google Scholar 

  80. Menicanti, L., Dor, V., Buckberg, G. D., Athanasuleas, C. L. & Di Donato, M. Inferior wall restoration: anatomic and surgical considerations. Semin. Thorac. Cardiovasc. Surg. 13, 504–513 (2001).

    CAS  PubMed  Google Scholar 

  81. Dor, V., Civaia, F., Alexandrescu, C., Sabatier, M. & Montiglio, F. Favorable effects of left ventricular reconstruction in patients excluded from the Surgical Treatments for Ischemic Heart Failure (STICH) trial. J. Thorac. Cardiovasc. Surg. 141, 905–916 (2011).

    PubMed  Google Scholar 

  82. Buckberg, G. D. Basic science review: the helix and the heart. J. Thorac. Cardiovasc. Surg. 124, 863–883 (2002).

    PubMed  Google Scholar 

  83. Cirillo, M. & Arpesella, G. Rewind the heart: a novel technique to reset heart fibers' orientation in surgery for ischemic cardiomyopathy. Med. Hypotheses 70, 848–854 (2008).

    PubMed  Google Scholar 

  84. Matsui, Y., Fukada, Y., Naito, Y. & Sasaki, S. Integrated overlapping ventriculoplasty combined with papillary muscle plication for severely dilated heart failure. J. Thorac. Cardiovasc. Surg. 127, 1221–1223 (2004).

    PubMed  Google Scholar 

  85. Bellenger, N. G. et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur. Heart J. 21, 1387–1396 (2000).

    CAS  PubMed  Google Scholar 

  86. Sun, X. G., Hansen, J. E. & Stringer, W. W. Oxygen uptake efficiency plateau best predicts early death in heart failure. Chest 141, 1284–1294 (2012).

    PubMed  Google Scholar 

  87. Parrino, P. E. & Kron, I. L. for the RESTORE Group. The role of left ventricular reconstruction for cardiogenic shock. Semin. Thorac. Cardiovasc. Surg. 13, 476–479 (2001).

    CAS  PubMed  Google Scholar 

  88. Hernandez, A. F. et al. Contemporary performance of surgical ventricular restoration procedures: data from the Society of Thoracic Surgeons' National Cardiac Database. Am. Heart J. 152, 494–499 (2006).

    PubMed  Google Scholar 

  89. Dunlay, S. M. et al. Hospitalizations after heart failure diagnosis a community perspective. J. Am. Coll. Cardiol. 54, 1695–1702 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    PubMed  Google Scholar 

  91. Di Donato, M., Castelvecchio, S. & Menicanti, L. End-systolic volume following surgical ventricular reconstruction impacts survival in patients with ischaemic dilated cardiomyopathy. Eur. J. Heart Fail. 12, 375–381 (2010).

    PubMed  Google Scholar 

  92. Carmichael, B. B. et al. Effects of surgical ventricular restoration on left ventricular function: dynamic MR imaging. Radiology 241, 710–717 (2006).

    PubMed  Google Scholar 

  93. Schenk, S. et al. Neurohormonal response to left ventricular reconstruction surgery in ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 128, 38–43 (2004).

    CAS  PubMed  Google Scholar 

  94. Di Donato, M. et al. Surgical ventricular restoration improves mechanical intraventricular dyssynchrony in ischemic cardiomyopathy. Circulation 109, 2536–2543 (2004).

    PubMed  Google Scholar 

  95. Westermann, D. et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117, 2051–2060 (2008).

    PubMed  Google Scholar 

  96. Moss, A. J. et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation 110, 3760–3765 (2004).

    PubMed  Google Scholar 

  97. Pocar, M. et al. Predictors of adverse events after surgical ventricular restoration for advanced ischaemic cardiomyopathy. Eur. J. Cardiothorac. Surg. 37, 1093–1100 (2010).

    PubMed  Google Scholar 

  98. Ferrazzi, P. et al. Surgical ventricular reverse remodeling in severe ischemic dilated cardiomyopathy: the relevance of the left ventricular equator as a prognostic factor. J. Thorac. Cardiovasc. Surg. 131, 357–363 (2006).

    PubMed  Google Scholar 

  99. Turakhia, M. & Tseng, Z. H. Sudden cardiac death: epidemiology, mechanisms, and therapy. Curr. Probl. Cardiol. 32, 501–546 (2007).

    PubMed  Google Scholar 

  100. Hohnloser, S. H. et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N. Engl. J. Med. 351, 2481–2488 (2004).

    CAS  PubMed  Google Scholar 

  101. Bonow, R. O. et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364, 1617–1625 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Buckberg, G. D. & Athanasuleas, C. L. The STICH trial: misguided conclusions. J. Thorac. Cardiovasc. Surg. 138, 1060–1064 (2009).

    PubMed  Google Scholar 

  103. Zembala, M. et al. Clinical characteristics of patients undergoing surgical ventricular reconstruction by choice and by randomization. J. Am. Coll. Cardiol. 56, 499–507 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Oh, J. K. et al. Core lab analysis of baseline echocardiographic studies in the STICH trial and recommendation for use of echocardiography in future clinical trials. J. Am. Soc. Echocardiogr. 25, 327–336 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Michler, R. E. et al. Influence of left ventricular volume reduction on outcome after coronary artery bypass grafting with or without surgical ventricular reconstruction. Presented at the 59th ACC Scientific Sessions (2010).

  106. Batista, R. J. et al. Partial left ventriculectomy to treat end-stage heart disease. Ann. Thorac. Surg. 64, 634–638 (1997).

    CAS  PubMed  Google Scholar 

  107. Ascione, R., Lim, K. H., Chamberlain, M., Al Ruzzeh, S. & Angelini, G. D. Early and late results of partial left ventriculectomy: single center experience and review of the literature. J. Card. Surg. 18, 190–196 (2003).

    PubMed  Google Scholar 

  108. Franco-Cereceda, A. et al. Partial left ventriculectomy for dilated cardiomyopathy: is this an alternative to transplantation. J. Thorac. Cardiovasc. Surg. 121, 879–893 (2001).

    CAS  PubMed  Google Scholar 

  109. Suma, H., Isomura, T., Horii, T. & Buckberg, G. for the RESTORE Group. Role of site selection for left ventriculoplasty to treat idiopathic dilated cardiomyopathy. Heart Fail. Rev. 9, 329–336 (2004).

    PubMed  Google Scholar 

  110. Setser, R. M. et al. Noninvasive assessment of cardiac mechanics and clinical outcome after partial left ventriculectomy. Ann. Thorac. Surg. 76, 1576–1585 (2003).

    PubMed  Google Scholar 

  111. Mann, D. L. et al. Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann. Thorac. Surg. 84, 1226–1235 (2007).

    PubMed  Google Scholar 

  112. Acker, M. A. et al. Mitral valve repair in heart failure: five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J. Thorac. Cardiovasc. Surg. 142, 569–574 (2011).

    PubMed  Google Scholar 

  113. Kawaguchi, A. T., Ujiie, T., Koide, S. & Batista, R. J. in Partial Left Ventriculectomy: Its Theories, Results, and Perspectives (eds Akira, T. & Kawaguchi, A. T.) 59–75 (Elsevier, Tokyo, 1998).

    Google Scholar 

  114. Maybaum, S. et al. Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115, 2497–2505 (2007).

    PubMed  Google Scholar 

  115. Margulies, K. B. Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J. Card. Fail. 8 (6 Suppl.), S500–S505 (2002).

    PubMed  Google Scholar 

  116. Yacoub, M. H. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. Eur. Heart J. 22, 534–540 (2001).

    CAS  PubMed  Google Scholar 

  117. Caulfield, J. B. & Janicki, J. S. Structure and function of myocardial fibrillar collagen. Technol. Health Care 5, 95–113 (1997).

    CAS  PubMed  Google Scholar 

  118. Malliaras, K. & Marbán, E. Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br. Med. Bull. 98, 161–185 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    CAS  PubMed  Google Scholar 

  120. Levin, H. R. et al. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91, 2717–2720 (1995).

    CAS  PubMed  Google Scholar 

  121. Trainini, J. C. et al. La bomba de succión cardíaca. Aplicación de la banda miocárdica de Torrent Guasp al tratamiento quirúrgico de la insuficiencia cardíaca. Cir. Cardiov. 18, 103–112 (2011).

    Google Scholar 

  122. Williams, J. A. et al. Surgical ventricular restoration versus cardiac transplantation: a comparison of cost, outcomes, and survival. J. Card. Fail. 14, 547–554 (2008).

    PubMed  Google Scholar 

  123. Trehan, N. et al. Surgical treatment of post infarction left ventricular aneurysms: our experience with double breasting and Dor's repair. J. Card. Surg. 18, 114–120 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching data for the article, discussion of content, writing the article, and review/editing before submission.

Corresponding author

Correspondence to Gerald Buckberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckberg, G., Athanasuleas, C. & Conte, J. Surgical ventricular restoration for the treatment of heart failure. Nat Rev Cardiol 9, 703–716 (2012). https://doi.org/10.1038/nrcardio.2012.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing