Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipose tissue: friend or foe?

Abstract

The perception of adipose tissue has changed considerably with the dramatic increase in the incidence of obesity and obesity-related comorbidities over the past 3 decades. Excess fat is no longer associated with wealth, but is instead recognized as a risk factor for many diseases. Adipose tissue is increasingly being identified as a vital, complex endocrine organ, and not simply as a fat store. Not all fat is created equal—regional, developmental, structural, and functional variations exist. Epicardial adipose tissue is a metabolically active organ producing a number of factors that modulate cardiac structure and function. The global epidemic of obesity and metabolic syndrome imposes a major disease burden, particularly of cardiovascular disease. In this Review, we describe the various types of adipose tissue—their developmental biology, differentiation, cell heterogeneity, and functional characteristics. We discuss the link between adipose tissue and inflammation, the signaling factors released by adipose tissue, as well as cardiac adiposity and its relevance to cardiovascular diseases. Finally, we review the myocardial regenerative potential of adipose-tissue-derived stem cells. We believe that a thorough understanding of adipose tissue is of great clinical value.

Key Points

  • Distinct functional types of adipose tissue exist, each with a characteristic origin and pattern of development and differentiation

  • Adipose tissue displays both structural and regional heterogeneity

  • Adipose tissue secretes numerous factors, including cytokines and growth factors, with physiological and pathological roles

  • Cardiac adiposity is a marker of, and contributory factor to, various cardiac diseases

  • Adipose-tissue-derived stem cells might have an important role in myocardial regeneration and repair

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of thermogenesis.
Figure 2: Origins and development of white and brown adipose tissue.20
Figure 3: Sequential activation of transcription factors controls adipogenesis.33
Figure 4: Ultrastructure of adipose tissue.
Figure 5: Distribution of epicardial AT.

Similar content being viewed by others

References

  1. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis—the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Google Scholar 

  2. Flier, J. S., Cook, K. S., Usher, P. & Spielgelman, B. M. Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405–408 (1987).

    CAS  PubMed  Google Scholar 

  3. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  4. Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    CAS  PubMed  Google Scholar 

  5. Navarrete, A., Schaik, C. P. V. & Isler, K. Energetics and the evolution of human brain size. Nature 480, 91–93 (2011).

    CAS  PubMed  Google Scholar 

  6. Ronti, T., Lupattelli, G. & Mannarino, E. The endocrine function of adipose tissue: an update. Clin. Endocrinol. (Oxf.) 64, 355–365 (2006).

    CAS  Google Scholar 

  7. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Trayhurn, P. Adipocyte biology. Obes. Rev. 8 (Suppl. 1), 41–44 (2007).

    CAS  PubMed  Google Scholar 

  9. Lidell, M. E. & Enerbäck, S. Brown adipose tissue—a new role in humans? Nat. Rev. Endocrinol. 6, 319–325 (2010).

    PubMed  Google Scholar 

  10. Yang, X., Enerbäck, S. & Smith, U. Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. Obes. Res. 11, 1182–1191 (2003).

    CAS  PubMed  Google Scholar 

  11. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–469 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castillo-Quan, J. I. From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. Dis. Model. Mech. 5, 293–295 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Poissonnet, C. M., LaVelle, M. & Burdi, A. R. Growth and development of adipose tissue. J. Pediatr. 113, 1–9 (1988).

    CAS  PubMed  Google Scholar 

  16. Wajchenberg, B. L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21, 697–738 (2000).

    CAS  PubMed  Google Scholar 

  17. Poissonnet, C. M., Burdi, A. R. & Garn, S. M. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum. Dev. 10, 1–11 (1984).

    CAS  PubMed  Google Scholar 

  18. Bartness, T. J., Vaughan, C. H. & Song, C. K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. (Lond.) 34 (Suppl. 1), S36–S42 (2010).

    Google Scholar 

  19. Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

    CAS  PubMed  Google Scholar 

  20. Enerbäck, S. The origins of brown adipose tissue. N. Engl. J. Med. 360, 2021–2023 (2009).

    PubMed  Google Scholar 

  21. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosen, E. D., Walkey, C. J., Puigserver, P. & Spiegelman, B. M. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293–1307 (2000).

    CAS  PubMed  Google Scholar 

  23. Salma, N., Xiao, H. & Imbalzano, A. N. Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J. Mol. Endocrinol. 36, 139–151 (2006).

    CAS  PubMed  Google Scholar 

  24. Darlington, G. J., Ross, S. E. & MacDougald, O. A. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057–30060 (1998).

    CAS  PubMed  Google Scholar 

  25. Mori, T. et al. Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J. Biol. Chem. 280, 12867–12875 (2005).

    CAS  PubMed  Google Scholar 

  26. Gray, S. et al. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 277, 34322–34328 (2002).

    CAS  PubMed  Google Scholar 

  27. Oishi, Y. et al. Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27–39 (2005).

    CAS  PubMed  Google Scholar 

  28. Wu, J., Srinivasan, S. V., Neumann, J. C. & Lingrel, J. B. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44, 11098–11105 (2005).

    CAS  PubMed  Google Scholar 

  29. Lemieux, S. et al. Seven-year changes in body fat and visceral adipose tissue in women. Association with indexes of plasma glucose-insulin homeostasis. Diabetes Care 19, 983–991 (1996).

    CAS  PubMed  Google Scholar 

  30. Tankó, L. B., Bagger, Y. Z., Alexandersen, P., Larsen, P. J. & Christiansen, C. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation 107, 1626–1631 (2003).

    PubMed  Google Scholar 

  31. Porter, S. T. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32, 1068–1075 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Tchkonia, T. et al. Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am. J. Physiol. Endocrinol. Metab. 288, E267–E277 (2005).

    CAS  PubMed  Google Scholar 

  33. Sethi, J. K. & Vidal-Puig, A. J. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 48, 1253–1262 (2007).

    CAS  PubMed  Google Scholar 

  34. Alessi, M.-C., Poggi, M. & Juhan-Vague, I. Plasminogen activator inhibitor-1, adipose tissue and insulin resistance. Curr. Opin. Lipidol. 18, 240–245 (2007).

    CAS  PubMed  Google Scholar 

  35. Fujioka, D. et al. Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart. Am. J. Physiol. Heart Circ. Physiol. 290, H2409–H2416 (2006).

    CAS  PubMed  Google Scholar 

  36. Ouchi, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein, adiponectin. Circulation 100, 2473–2476 (1999).

    CAS  PubMed  Google Scholar 

  37. Ouchi, N. et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057–1063 (2001).

    CAS  PubMed  Google Scholar 

  38. Chen, H., Montagnani, M., Funahashi, T., Shimomura, I. & Quon, M. J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 278, 45021–45026 (2003).

    CAS  PubMed  Google Scholar 

  39. Iacobellis, G., Petrone, A., Leonetti, F. & Buzzetti, R. Left ventricular mass and +276 G/G single nucleotide polymorphism of the adiponectin gene in uncomplicated obesity. Obesity 14, 368–372 (2006).

    CAS  PubMed  Google Scholar 

  40. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  41. Lee, Y. et al. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc. Natl Acad. Sci. USA 101, 13624–13629 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith, C. C. T. et al. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am. J. Physiol. Heart Circ. Physiol. 299, H1265–H1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Halestrap, A. P., Clarke, S. J. & Javadov, S. A. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res. 61, 372–385 (2004).

    CAS  PubMed  Google Scholar 

  44. Boengler, K., Hilfiker-Kleiner, D., Drexler, H., Heusch, G. & Schulz, R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol. Ther. 120, 172–185 (2008).

    CAS  PubMed  Google Scholar 

  45. Bełtwski, J. Leptin and atherosclerosis. Atherosclerosis 189, 47–60 (2006).

    Google Scholar 

  46. Shirasaka, T., Takasaki, M. & Kannan, H. Cardiovascular effects of leptin and orexins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R639–R651 (2003).

    CAS  PubMed  Google Scholar 

  47. Heinonen, M. V. et al. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul. Pept. 130, 7–13 (2005).

    CAS  PubMed  Google Scholar 

  48. Scimia, M. C. et al. APJ acts as a dual receptor in cardiac hypertrophy. Nature 488, 394–398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Szokodi, I. et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res. 91, 434–440 (2002).

    CAS  PubMed  Google Scholar 

  50. Tatemoto, K. et al. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept. 99, 87–92 (2001).

    CAS  PubMed  Google Scholar 

  51. Leeper, N. J. et al. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am. J. Physiol. Heart Circ. Physiol. 296, H1329–H1335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Veer, E. et al. Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ. Res. 97, 25–34 (2005).

    CAS  PubMed  Google Scholar 

  53. Adya, R., Tan, B. K., Chen, J. & Randeva, H. S. Nuclear factor-κB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation. Diabetes Care 31, 758–760 (2008).

    CAS  PubMed  Google Scholar 

  54. Smith, J., Al-Amri, M., Sniderman, A. & Cianflone, K. Visfatin concentration in Asian Indians is correlated with high density lipoprotein cholesterol and apolipoprotein A1. Clin. Endocrinol. (Oxf.) 65, 667–672 (2006).

    CAS  Google Scholar 

  55. Dahl, T. B. et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 115, 972–980 (2007).

    CAS  PubMed  Google Scholar 

  56. Lim, S. Y. et al. The novel adipocytokine visfatin exerts direct cardioprotective effects. J. Cell. Mol. Med. 12, 1395–1403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    CAS  PubMed  Google Scholar 

  58. Azuma, K. et al. Correlation between serum resistin level and adiposity in obese individuals. Obes. Res. 11, 997–1001 (2003).

    CAS  PubMed  Google Scholar 

  59. Youn, B.-S. et al. Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 89, 150–156 (2004).

    CAS  PubMed  Google Scholar 

  60. Lee, J. H. et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 88, 4848–4856 (2003).

    CAS  PubMed  Google Scholar 

  61. Frankel, D. S. et al. Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J. Am. Coll. Cardiol. 53, 754–762 (2009).

    CAS  PubMed  Google Scholar 

  62. Weikert, C. et al. Plasma resistin levels and risk of myocardial infarction and ischemic stroke. J. Clin. Endocrinol. Metab. 93, 2647–2653 (2008).

    CAS  PubMed  Google Scholar 

  63. Kawanami, D. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine–endothelial cell interactions. Biochem. Biophys. Res. Commun. 314, 415–419 (2004).

    CAS  PubMed  Google Scholar 

  64. Verma, S. et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108, 736–740 (2003).

    CAS  PubMed  Google Scholar 

  65. Wittamer, V. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977–985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lehrke, M. et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161, 339–344 (2009).

    CAS  PubMed  Google Scholar 

  67. Berg, A. H., Lin, Y., Lisanti, M. P. & Scherer, P. E. Adipocyte differentiation induces dynamic changes in NF-κB expression and activity. Am. J. Physiol. Endocrinol. Metab. 287, E1178–E1188 (2004).

    CAS  PubMed  Google Scholar 

  68. Rajala, M. W. & Scherer, P. E. Minireview: The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765–3773 (2003).

    CAS  PubMed  Google Scholar 

  69. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P. & Bahouth, S. W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273–2282 (2004).

    CAS  PubMed  Google Scholar 

  70. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    CAS  PubMed  Google Scholar 

  73. Dhurandhar, N. V. A framework for identification of infections that contribute to human obesity. Lancet Infect. Dis. 11, 963–969 (2011).

    PubMed  Google Scholar 

  74. Atkinson, R. L. et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int. J. Obes. (Lond.) 29, 281–286 (2005).

    CAS  Google Scholar 

  75. Iacobellis, G. & Willens, H. J. Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr. 22, 1311–1319 (2009).

    PubMed  Google Scholar 

  76. Iacobellis, G. & Bianco, A. C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 22, 450–457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Iacobellis, G., Corradi, D. & Sharma, A. M. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2, 536–543 (2005).

    PubMed  Google Scholar 

  78. Sacks, H. S. & Fain, J. N. Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917 (2007).

    CAS  PubMed  Google Scholar 

  79. Ho, E. & Shimada, Y. Formation of the epicardium studied with the scanning electron microscope. Dev. Biol. 66, 579–585 (1978).

    CAS  PubMed  Google Scholar 

  80. Moore, K. L. & Persaud, T. V. N. The developing human: clinically oriented embryology. 7th edn 189 (Saunders, Philadelphia, PA, 2003).

    Google Scholar 

  81. Iacobellis, G. & Barbaro, G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm. Metab. Res. 40, 442–445 (2008).

    CAS  PubMed  Google Scholar 

  82. Sacks, H. S. et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 94, 3611–3615 (2009).

    CAS  PubMed  Google Scholar 

  83. Marchington, J. M. & Pond, C. M. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int. J. Obes. 14, 1013–1022 (1990).

    CAS  PubMed  Google Scholar 

  84. Paolisso, G. et al. Association of fasting plasma free fatty acid concentration and frequency of ventricular premature complexes in nonischemic non-insulin-dependent diabetic patients. Am. J. Cardiol. 80, 932–937 (1997).

    CAS  PubMed  Google Scholar 

  85. Mazurek, T. et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003).

    PubMed  Google Scholar 

  86. Hirata, Y. et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J. Am. Coll. Cardiol. 58, 248–255 (2011).

    CAS  PubMed  Google Scholar 

  87. Iglesias, M. et al. Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue: findings in patients undergoing cardiac surgery [Spanish]. Rev. Esp. Cardiol. 59, 1252–1260 (2006).

    PubMed  Google Scholar 

  88. Lauer, M. N. et al. AGT, PAI and resistin gene expression in human epicardial fat [abstract 100]. Presented at the 38th Annual Meeting of the European Association for the Study of Diabetes.

  89. Taslipina, A. et al. Epicardial adipose tissue thickness and serum visfatin levels in patients with new diagnosed prediabetes and type 2 diabetes mellitus [abstract]. Endocrine Abstracts 20, P369 (2009).

    Google Scholar 

  90. Gollasch, M. Vasodilator signals from perivascular adipose tissue. Br. J. Pharmacol. 165, 633–642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Iacobellis, G. et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88, 5163–5168 (2003).

    CAS  PubMed  Google Scholar 

  92. Iacobellis, G. & Leonetti, F. Epicardial adipose tissue and insulin resistance in obese subjects. J. Clin. Endocrinol. Metab. 90, 6300–6302 (2005).

    CAS  PubMed  Google Scholar 

  93. Iacobellis, G., Singh, N., Wharton, S. & Sharma, A. M. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 16, 1693–1697 (2008).

    PubMed  Google Scholar 

  94. Natale, F. et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur. J. Echocardiogr. 10, 549–555 (2009).

    PubMed  Google Scholar 

  95. Eroglu, S. et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 19, 211–217 (2009).

    CAS  PubMed  Google Scholar 

  96. Ahn, S.-G. et al. Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94, e7 (2008).

    PubMed  Google Scholar 

  97. Sarin, S. et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am. J. Cardiol. 102, 767–771 (2008).

    PubMed  Google Scholar 

  98. Alexopoulos, N. et al. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210, 150–154 (2010).

    CAS  PubMed  Google Scholar 

  99. Janik, M. et al. Epicardial adipose tissue volume and coronary artery calcium to predict myocardial ischemia on positron emission tomography-computed tomography studies. J. Nucl. Cardiol. 17, 841–847 (2010).

    PubMed  Google Scholar 

  100. de Vos, A. M. et al. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur. Heart J. 29, 777–783 (2008).

    PubMed  Google Scholar 

  101. Flüchter, S. et al. Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 15, 870–878 (2007).

    PubMed  Google Scholar 

  102. Corradi, D. et al. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 13, 313–316 (2004).

    PubMed  Google Scholar 

  103. Iacobellis, G., Leonetti, F., Singh, N. & Sharma, A. M. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–273 (2007).

    PubMed  Google Scholar 

  104. Al Chekakie, M. O. et al. Pericardial fat is independently associated with human atrial fibrillation. J. Am. Coll. Cardiol. 56, 784–788 (2010).

    PubMed  Google Scholar 

  105. Abed, H. S. et al. Periatrial fat volume is predictive of atrial fibrillation severity [abstract PO5-24]. Heart Rhythm 7 (Suppl.), S327 (2010).

    Google Scholar 

  106. Batal, O. et al. Left atrial epicardial adiposity and atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 230–236 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. Mathieu, P., Després, J. P. & Pibarot, P. The 'valvulo-metabolic' risk in calcific aortic valve disease. Can. J. Cardiol. 23 (Suppl. B), 32B–39B (2007).

    PubMed  PubMed Central  Google Scholar 

  108. Briand, M. et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation 114 (Suppl. 1), I512–I517 (2006).

    PubMed  Google Scholar 

  109. Lombardi, R. & Marian, A. J. Molecular genetics and pathogenesis of arrhythmogenic right ventricular cardiomyopathy: a disease of cardiac stem cells. Pediatr. Cardiol. 32, 360–365 (2011).

    PubMed  Google Scholar 

  110. Rubin, J. P., Bennett, J. M., Doctor, J. S., Tebbets, B. M. & Marra, K. G. Collagenous microbeads as a scaffold for tissue engineering with adipose-derived stem cells. Plast. Reconstr. Surg. 120, 414–424 (2007).

    CAS  PubMed  Google Scholar 

  111. Schipper, B. M., Marra, K. G., Zhang, W., Donnenberg, A. D. & Rubin, J. P. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann. Plast. Surg. 60, 538–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fraser, J. K., Wulur, I., Alfonso, Z. & Hedrick, M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150–154 (2006).

    CAS  PubMed  Google Scholar 

  113. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rangappa, S. et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann. Thorac. Surg. 75, 775–779 (2003).

    PubMed  Google Scholar 

  115. Fischer, L. J. et al. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J. Surg. Res. 152, 157–166 (2009).

    CAS  PubMed  Google Scholar 

  116. Brzoska, M., Geiger, H., Gauer, S. & Baer, P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 330, 142–150 (2005).

    CAS  PubMed  Google Scholar 

  117. Corre, J. et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J. Cell. Physiol. 208, 282–288 (2006).

    CAS  PubMed  Google Scholar 

  118. Seo, M. J., Suh, S. Y., Bae, Y. C. & Jung, J. S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 328, 258–264 (2005).

    CAS  PubMed  Google Scholar 

  119. Timper, K. et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341, 1135–1140 (2006).

    CAS  PubMed  Google Scholar 

  120. Rehman, J. et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292–1298 (2004).

    PubMed  Google Scholar 

  121. Kim, W.-S., Park, B.-S. & Sung, J.-H. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin. Biol. Ther. 9, 879–887 (2009).

    CAS  PubMed  Google Scholar 

  122. Cai, L. et al. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27, 230–237 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bai, X. et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur. Heart J. 31, 489–501 (2010).

    CAS  PubMed  Google Scholar 

  124. Lapatina, M. et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE 6, e17899 (2011).

    Google Scholar 

  125. Bai, X. et al. Genetically selected stem cells from human adipose tissue express cardiac markers. Biochem. Biophys. Res. Commun. 353, 665–671 (2007).

    CAS  PubMed  Google Scholar 

  126. Gaustad, K. G., Boquest, A. C., Anderson, B. E., Gerdes, A. M. & Collas, P. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem. Biophys. Res. Commun. 314, 420–427 (2004).

    CAS  PubMed  Google Scholar 

  127. Planat-Bénard, V. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94, 223–229 (2004).

    PubMed  Google Scholar 

  128. van Dijk, A., Niessen, H. W. M., Zandieh Doulabi, B., Visser, F. C. & van Milligen, F. J. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res. 334, 457–467 (2008).

    CAS  PubMed  Google Scholar 

  129. Planat-Bénard, V. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94, 223–229 (2004).

    PubMed  Google Scholar 

  130. Madonna, R., Willerson, J. T. & Geng, Y.-J. Myocardin a enhances telomerase activities in adipose tissue mesenchymal cells and embryonic stem cells undergoing cardiovascular myogenic differentiation. Stem Cells 26, 202–211 (2008).

    CAS  PubMed  Google Scholar 

  131. Okura, H. et al. Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng. Pt C Methods 16, 417–425 (2010).

    CAS  Google Scholar 

  132. Valina, C. et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur. Heart J. 28, 2667–2677 (2007).

    PubMed  Google Scholar 

  133. Bayes-Genis, A. et al. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. J. Mol. Cell. Cardiol. 49, 771–780 (2010).

    CAS  PubMed  Google Scholar 

  134. Zhu, X.-Y. et al. Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem. Biophys. Res. Commun. 379, 1084–1090 (2009).

    CAS  PubMed  Google Scholar 

  135. Wang, L. et al. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am. J. Physiol. Heart Circ. Physiol. 297, H1020–H1031 (2009).

    CAS  PubMed  Google Scholar 

  136. Schenke-Layland, K. et al. Adipose tissue-derived cells improve cardiac function following myocardial infarction. J. Surg. Res. 153, 217–223 (2009).

    CAS  PubMed  Google Scholar 

  137. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    CAS  PubMed  Google Scholar 

  138. Wang, C. et al. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials 31, 621–630 (2010).

    PubMed  Google Scholar 

  139. Colazzo, F. et al. Extracellular matrix production by adipose-derived stem cells: implications for heart valve tissue engineering. Biomaterials 32, 119–127 (2011).

    CAS  PubMed  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  142. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  143. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  144. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  145. Colman, E. et al. The FDA's assessment of two drugs for chronic weight management. N. Engl. J. Med. 367, 1577–1579 (2012).

    CAS  PubMed  Google Scholar 

  146. Borrell, B. Weight-loss drug wins US approval: obesity treatment shows promise for patients with diabetes despite concerns that it could cause heart complications. Nat. News http://dx.doi.org/10.1038/nature.2012.10923.

  147. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bordicchia, M. et al. Cardiac natriuretic peptides act via P38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Espiritu, D. J. & Mazzone, T. Oxidative stress regulates adipocyte apolipoprotein E and suppresses its expression in obesity. Diabetes 57, 2992–2998 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Horowitz, J. F. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol. Metab. 14, 386–392 (2003).

    CAS  PubMed  Google Scholar 

  151. Zechner, R. et al. The role of lipoprotein lipase in adipose tissue development and metabolism. Int. J. Obes. Relat. Metab. Disord. 24 (Suppl. 4), S53–S56 (2000).

    CAS  PubMed  Google Scholar 

  152. Badeau, M., Vihma, V., Mikkola, T. S., Tiitinen, A. & Tikkanen, M. J. Estradiol fatty acid esters in adipose tissue and serum of pregnant and pre- and postmenopausal women. J. Clin. Endocrinol. Metab. 92, 4327–4331 (2007).

    CAS  PubMed  Google Scholar 

  153. Fain, J. N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477 (2006).

    CAS  PubMed  Google Scholar 

  154. Lönnqvist, F. et al. Leptin secretion from adipose tissue in women. Relationship to plasma levels and gene expression. J. Clin. Invest. 99, 2398–2404 (1997).

    PubMed  PubMed Central  Google Scholar 

  155. Garruti, G. et al. Expression and secretion of the atrial natriuretic peptide in human adipose tissue and preadipocytes. Obesity 15, 2181–2189 (2007).

    CAS  PubMed  Google Scholar 

  156. Wilkison, W. O., Choy, L. & Spiegelman, B. M. Biosynthetic regulation of monobutyrin, an adipocyte-secreted lipid with angiogenic activity. J. Biol. Chem. 266, 16886–16891 (1991).

    CAS  PubMed  Google Scholar 

  157. Gabrielsson, B. G. et al. High expression of complement components in omental adipose tissue in obese men. Obes. Res. 11, 699–708 (2003).

    CAS  PubMed  Google Scholar 

  158. Napolitano, A. et al. Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int. J. Obes. Relat. Metab. Disord. 18, 213–218 (1994).

    CAS  PubMed  Google Scholar 

  159. Klöting, N. et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 6, 79–87 (2007).

    PubMed  Google Scholar 

  160. Mohamed-Ali, V. et al. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am. J. Physiol. Endocrinol. Metab. 277, E971–E975 (1999).

    CAS  Google Scholar 

  161. Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).

    CAS  PubMed  Google Scholar 

  162. Hoffstedt, J., Arvidsson, E., Sjölin, E., Wåhlén, K. & Arner, P. Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J. Clin. Endocrinol. Metab. 89, 1391–1396 (2004).

    CAS  PubMed  Google Scholar 

  163. Boucher, J. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).

    CAS  PubMed  Google Scholar 

  164. Cai, R.-C. et al. Expression of omentin in adipose tissues in obese and type 2 diabetic patients [Chinese]. Zhonghua Yi Xue Za Zhi 89, 381–384 (2009).

    CAS  PubMed  Google Scholar 

  165. Simon, M. F. et al. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor γ2. J. Biol. Chem. 280, 14656–14662 (2005).

    CAS  PubMed  Google Scholar 

  166. Do, M.-S. et al. Metallothionein gene expression in human adipose tissue from lean and obese subjects. Horm. Metab. Res. 34, 348–351 (2002).

    CAS  PubMed  Google Scholar 

  167. Alessi, M. C. et al. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46, 860–867 (1997).

    CAS  PubMed  Google Scholar 

  168. Bełtwski, J. Adiponectin and resistin—new hormones of white adipose tissue. Med. Sci. Monit. 9, RA55–RA61 (2003).

    Google Scholar 

  169. Ding, J. et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 90, 499–504 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Greif, M. et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 781–786 (2009).

    CAS  PubMed  Google Scholar 

  171. Tamarappoo, B. et al. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc. Imaging 3, 1104–1112 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Miao, C. et al. The association of pericardial fat with coronary artery plaque index at MR imaging: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology 261, 109–115 (2011).

    PubMed  PubMed Central  Google Scholar 

  173. Patil, H. et al. Non-alcoholic fatty liver disease but not epicardial fat is associated with coronary artery calcification [abstract]. J. Am. Coll. Cardiol. 59, E1345 (2012).

    Google Scholar 

  174. Mazurek, M. et al. Peri-coronary epicardial adipose tissue affects coronary atherosclerosis in patients with acute myocardial infarction [abstract 560]. Circulation 118, S580–S581 (2008).

    Google Scholar 

  175. Doesch, C. et al. Epicardial adipose tissue in patients with heart failure. J. Cardiovasc. Magn. Reson. 12, 40 (2010).

    PubMed  PubMed Central  Google Scholar 

  176. Liang, K.-W. et al. MRI measured epicardial adipose tissue thickness at the right AV groove differentiates inflammatory status in obese men with metabolic syndrome. Obesity 20, 525–532 (2011).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching data for the article, discussion of its content, writing the article, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Magdi Yacoub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M., Latif, N. & Yacoub, M. Adipose tissue: friend or foe?. Nat Rev Cardiol 9, 689–702 (2012). https://doi.org/10.1038/nrcardio.2012.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing