Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug-coated balloon therapy in coronary and peripheral artery disease

Key Points

  • Nonstent-based local drug delivery with drug-coated balloons (DCBs) can achieve rapid transfer of a drug to surrounding tissue, and durable antirestenotic efficacy

  • Theoretical advantages of DCBs over drug-eluting stents (DESs) include broad surface contact, homogenous drug distribution, absence of stent footprint or polymer residue, and restoration of normal vessel anatomy and function

  • Preclinical studies have shown that DCB delivery of paclitaxel combined with a hydrophilic spacer (excipient) results in clinically effective local tissue drug concentrations and sustained inhibition of neointimal growth

  • Among patients with coronary bare-metal or drug-eluting stent restenosis, DCBs show similar results to standard-of-care treatment (repeat stenting with a DES) and obviate the need for further stent implants

  • Among patients with de novo coronary artery disease, convincing data from randomized trials to support DCB therapy is lacking, and the use of DCBs for this indication requires further investigation

  • In peripheral artery disease, DCB therapy has proven superior to balloon angioplasty for treatment of de novo femoropopliteal and below-the-knee disease

Abstract

Nonstent-based local drug delivery during percutaneous intervention offers potential for sustained antirestenotic efficacy without the limitations of permanent vascular implants. Preclinical studies have shown that effective local tissue concentrations of drugs can be achieved using drug-coated balloon (DCB) catheters. Matrix coatings consisting of a mixture of lipophilic paclitaxel and hydrophilic spacer (excipient) are most effective. Clinical applications most suited to DCB therapy are those for which stent implantation is not desirable or less effective, such as in-stent restenosis, bifurcation lesions, or peripheral artery stenoses. Randomized trials have shown superiority of DCBs over plain-balloon angioplasty for both bare-metal and drug-eluting coronary in-stent restenosis, and similar efficacy as repeat stenting with a drug-eluting stent (DES). Bycontrast, randomized trials of DCBs in de novo coronary stenosis have, to date, not shown similar efficacy to standard-of-care DES therapy. In peripheral artery disease, DCB therapy has proven superior to plain-balloon angioplasty for treatment of de novo femoropoliteal and below-the-knee disease, and shown promising results for in-stent restenosis. Overall, however, despite many years of clinical experience with DCBs, the number of large, high-quality, randomized clinical trials is low, and further data are urgently needed across the spectrum of clinical indications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drug-coated balloon structure and mechanism of action in in-stent restenosis.
Figure 2: Vascular effects of drug-coated balloon versus plain-balloon angioplasty in a rabbit iliac model.
Figure 3: Comparative efficacy of drug-coated balloon, drug-eluting stent, and balloon angioplasty in the treatment of restenosis within drug-eluting stents.
Figure 4: Risk of target-lesion revascularization in trials in which DCBs were compared with BA or DESs, according to indication.

Similar content being viewed by others

References

  1. Kuntz, R. E. & Baim, D. S. Defining coronary restenosis: newer clinical and angiographic paradigms. Circulation 88, 1310–1323 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Costa, M. A. & Simon, D. I. Molecular basis of restenosis and drug-eluting stents. Circulation 111, 2257–2273 (2005).

    Article  PubMed  Google Scholar 

  3. Byrne, R. A., Sarafoff, N., Kastrati, A. & Schomig, A. Drug-eluting stents in percutaneous coronary intervention: a benefit–risk assessment. Drug Saf. 32, 749–770 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Stefanini, G. G. & Holmes, D. R. Jr. Drug-eluting coronary-artery stents. N. Engl. J. Med. 368, 254–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Joner, M. et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48, 193–202 (2006).

    Article  PubMed  Google Scholar 

  6. Finn, A. V. et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol. 27, 1500–1510 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Byrne, R. A., Joner, M. & Kastrati, A. Polymer coatings and delayed arterial healing following drug-eluting stent implantation. Minerva Cardioangiol. 57, 567–584 (2009).

    CAS  PubMed  Google Scholar 

  8. Serruys, P. W. et al. The effect of variable dose and release kinetics on neointimal hyperplasia using a novel paclitaxel-eluting stent platform: the Paclitaxel In-Stent Controlled Elution Study (PISCES). J. Am. Coll. Cardiol. 46, 253–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Mehilli, J. et al. Randomized trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis. Eur. Heart J. 29, 1975–1982 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Axel, D. I. et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96, 636–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Oberhoff, M. et al. Local delivery of paclitaxel using the double-balloon perfusion catheter before stenting in the porcine coronary artery. Catheter. Cardiovasc. Interv. 53, 562–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Oberhoff, M. et al. Inhibition of smooth muscle cell proliferation after local drug delivery of the antimitotic drug paclitaxel using a porous balloon catheter. Basic Res. Cardiol. 96, 275–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Scheller, B., Speck, U., Schmitt, A., Böhm, M. & Nickenig, G. Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. J. Am. Coll. Cardiol. 42, 1415–1420 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Speck, U. et al. Inhibition of restenosis in stented porcine coronary arteries: uptake of Paclitaxel from angiographic contrast media. Invest. Radiol. 39, 182–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Scheller, B. et al. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110, 810–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Speck, U. et al. Neointima inhibition: comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries. Radiology 240, 411–418 (2006).

    Article  PubMed  Google Scholar 

  17. Cremers, B., Biedermann, M., Mahnkopf, D., Böhm, M. & Scheller, B. Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin. Res. Cardiol. 98, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Joner, M. et al. Comparative assessment of drug-eluting balloons in an advanced porcine model of coronary restenosis. Thromb. Haemost. 105, 864–872 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Radke, P. W. et al. Vascular effects of paclitaxel following drug-eluting balloon angioplasty in a porcine coronary model: the importance of excipients. EuroIntervention 7, 730–737 (2011).

    Article  PubMed  Google Scholar 

  20. Joner, M. et al. Preclinical evaluation of a novel drug-eluting balloon in an animal model of in-stent stenosis. J. Biomater. Appl. 27, 717–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Rome, J. J. et al. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler. Thromb. 14, 148–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kong, J. et al. Cutting balloon combined with paclitaxel-eluting balloon for treatment of in-stent restenosis. Arch. Cardiovasc. Dis. 106, 79–85 (2013).

    Article  PubMed  Google Scholar 

  23. Kleber, F. X. et al. Drug-coated balloons for treatment of coronary artery disease: updated recommendations from a consensus group. Clin. Res. Cardiol. http://dx.doi.org/10.1007/s00392-013-0609-7.

  24. Gutierrez-Chico, J. L. et al. Paclitaxel-coated balloon in combination with bare metal stent for treatment of de novo coronary lesions: an optical coherence tomography first-in-human randomised trial, balloon first vs. stent first. EuroIntervention 7, 711–722 (2011).

    Article  PubMed  Google Scholar 

  25. Virmani, R. et al. Drug eluting stents: are human and animal studies comparable? Heart 89, 133–138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hwang, C. W., Wu, D. & Edelman, E. R. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104, 600–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Scheller, B., Speck, U. & Böhm, M. Prevention of restenosis: is angioplasty the answer? Heart 93, 539–541 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buszman, P. P. et al. Tissue uptake, distribution, and healing response after delivery of paclitaxel via second-generation iopromide-based balloon coating: a comparison with the first-generation technology in the iliofemoral porcine model. JACC Cardiovasc. Interv. 6, 883–890 (2013).

    Article  PubMed  Google Scholar 

  29. Yazdani, S. K. et al. Vascular, downstream, and pharmacokinetic responses to treatment with a low dose drug-coated balloon in a swine femoral artery model. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.24995.

  30. Denardo, S. J. et al. Detailed analysis of polymer response to delivery balloon expansion of drug-eluting stents versus bare metal stents. EuroIntervention 9, 389–397 (2013).

    Article  PubMed  Google Scholar 

  31. Basalus, M. W., Joner, M., von Birgelen, C. & Byrne, R. A. Polymer coatings on drug-eluting stents: Samson's hair and Achilles' heel? EuroIntervention 9, 302–305 (2013).

    Article  PubMed  Google Scholar 

  32. Cremers, B. et al. Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin. Res. Cardiol. 101, 469–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Granada, J. F. et al. Vascular response to zotarolimus-coated balloons in injured superficial femoral arteries of the familial hypercholesterolemic swine. Circ. Cardiovasc. Interv. 4, 447–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kolachalama, V. B. et al. Mechanisms of tissue uptake and retention in zotarolimus-coated balloon therapy. Circulation 127, 2047–2055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lemos, P. A. et al. Emerging technologies: polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter. EuroIntervention 9, 148–156 (2013).

    Article  PubMed  Google Scholar 

  36. Scheller, B. et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 355, 2113–2124 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Scheller, B. et al. Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. Clin. Res. Cardiol. 97, 773–781 (2008).

    Article  PubMed  Google Scholar 

  38. Scheller, B. et al. Long-term follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. JACC Cardiovasc. Interv. 5, 323–330 (2012).

    Article  PubMed  Google Scholar 

  39. Kastrati, A. et al. Sirolimus-eluting stent or paclitaxel-eluting stent vs balloon angioplasty for prevention of recurrences in patients with coronary in-stent restenosis: a randomized controlled trial. JAMA 293, 165–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Alfonso, F. et al. A randomized comparison of sirolimus-eluting stent with balloon angioplasty in patients with in-stent restenosis: results of the Restenosis Intrastent: Balloon Angioplasty Versus Elective Sirolimus-Eluting Stenting (RIBS-II) trial. J. Am. Coll. Cardiol. 47, 2152–2160 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Dibra, A. et al. Effectiveness of drug-eluting stents in patients with bare-metal in-stent restenosis: meta-analysis of randomized trials. J. Am. Coll. Cardiol. 49, 616–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Unverdorben, M. et al. Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119, 2986–2994 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Alfonso, F. et al. New stent implantation for recurrences after stenting for in-stent restenosis: implications of a third metal layer in human coronary arteries. J. Am. Coll. Cardiol. 54, 1036–1038 (2009).

    Article  PubMed  Google Scholar 

  44. Byrne, R. A., Joner, M., Tada, T. & Kastrati, A. Restenosis in bare metal and drug-eluting stents: distinct mechanistic insights from histopathology and optical intravascular imaging. Minerva Cardioangiol. 60, 473–489 (2012).

    CAS  PubMed  Google Scholar 

  45. Nakano, M. et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht241.

  46. Latib, A. et al. Long-term outcomes after the percutaneous treatment of drug-eluting stent restenosis. JACC Cardiovasc. Interv. 4, 155–164 (2011).

    Article  PubMed  Google Scholar 

  47. Kastrati, A. & Byrne, R. New roads, new ruts: lessons from drug-eluting stent restenosis. JACC Cardiovasc. Interv. 4, 165–167 (2011).

    Article  PubMed  Google Scholar 

  48. Nagoshi, R. et al. Qualitative and quantitative assessment of stent restenosis by optical coherence tomography—comparison between drug-eluting and bare-metal stents. Circ. J. 77, 652–660 (2013).

    Article  PubMed  Google Scholar 

  49. Steinberg, D. H. et al. Outcome differences with the use of drug-eluting stents for the treatment of in-stent restenosis of bare-metal stents versus drug-eluting stents. Am. J. Cardiol. 103, 491–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Byrne, R. A. et al. Differential relative efficacy between drug-eluting stents in patients with bare metal and drug-eluting stent restenosis; evidence in support of drug resistance: insights from the ISAR-DESIRE and ISAR-DESIRE 2 trials. EuroIntervention [online], (2013).

    Google Scholar 

  51. Habara, S. et al. Effectiveness of paclitaxel-eluting balloon catheter in patients with sirolimus-eluting stent restenosis. JACC Cardiovasc. Interv. 4, 149–154 (2011).

    Article  PubMed  Google Scholar 

  52. Habara, S. et al. A multicenter randomized comparison of paclitaxel-coated balloon catheter with conventional balloon angioplasty in patients with bare-metal stent restenosis and drug-eluting stent restenosis. Am. Heart J. 166, 527–533.e2 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Rittger, H. et al. A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: the PEPCAD-DES study. J. Am. Coll. Cardiol. 59, 1377–1382 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Byrne, R. A. et al. Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet 381, 461–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Kwong, J. S. & Yu, C. M. Drug-eluting balloons for coronary artery disease: an updated meta-analysis of randomized controlled trials. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2013.03.180.

  56. Indermuehle, A. et al. Drug-eluting balloon angioplasty for in-stent restenosis: a systematic review and meta-analysis of randomised controlled trials. Heart 99, 327–333 (2013).

    Article  PubMed  Google Scholar 

  57. Wohrle, J. et al. SeQuent Please World Wide Registry: clinical results of SeQuent Please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J. Am. Coll. Cardiol. 30, 1733–1738 (2012).

    Article  Google Scholar 

  58. Stella, P. R. et al. The Valentines trial: results of the first one week worldwide multicentre enrolment trial, evaluating the real world usage of the second generation DIOR paclitaxel drug-eluting balloon for in-stent restenosis treatment. EuroIntervention 7, 705–710 (2011).

    Article  PubMed  Google Scholar 

  59. Hehrlein, C. et al. Twelve-month results of a paclitaxel releasing balloon in patients presenting with in-stent restenosis first-in-man (PEPPER) trial. Cardiovasc. Revasc. Med. 13, 260–264 (2012).

    Article  PubMed  Google Scholar 

  60. Almalla, M., Schröder, J., Pross, V., Marx, N. & Hoffmann, R. Paclitaxel-eluting balloon versus everolimus-eluting stent for treatment of drug-eluting stent restenosis. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.25072.

  61. Bondesson, P. et al. Comparison of two drug-eluting balloons: a report from the SCAAR registry. EuroIntervention 8, 444–449 (2012).

    Article  PubMed  Google Scholar 

  62. Agostoni, P. et al. Serial morphological and functional assessment of drug-eluting balloon for in-stent restenotic lesions: mechanisms of action evaluated with angiography, optical coherence tomography, and fractional flow reserve. JACC Cardiovasc. Interv. 6, 569–576 (2013).

    Article  PubMed  Google Scholar 

  63. Serruys, P. W. et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 331, 489–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Fischman, D. L. et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331, 496–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Schömig, A. et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N. Engl. J. Med. 334, 1084–1089 (1996).

    Article  PubMed  Google Scholar 

  66. Wohrle, J. et al. Prospective randomised trial evaluating a paclitaxel-coated balloon in patients treated with endothelial progenitor cell capturing stents for de novo coronary artery disease. Heart 97, 1338–1342 (2011).

    Article  PubMed  Google Scholar 

  67. Belkacemi, A. et al. First results of the DEB-AMI (Drug Eluting Balloon in Acute ST-segment elevation Myocardial Infarction) trial: a multicenter randomized comparison of drug-eluting balloon plus bare-metal stent versus bare-metal stent versus drug-eluting stent in primary percutaneous coronary intervention with 6-month angiographic, intravascular, functional, and clinical outcomes. J. Am. Coll. Cardiol. 59, 2327–2337 (2012).

    Article  PubMed  Google Scholar 

  68. Clever, Y. P. et al. Influence of a paclitaxel coated balloon in combination with a bare metal stent on restenosis and endothelial function—comparison with a drug eluting stent and a bare metal stent. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.25184.

  69. Ali, R. M. et al. Paclitaxel-eluting balloon angioplasty and cobalt-chromium stents versus conventional angioplasty and paclitaxel-eluting stents in the treatment of native coronary artery stenoses in patients with diabetes mellitus. EuroIntervention 7 (Suppl. K), K83–K92 (2011).

    Article  PubMed  Google Scholar 

  70. Serruys, P. W., Garcia-Garcia, H. M. & Onuma, Y. From metallic cages to transient bioresorbable scaffolds. Change in paradigm of coronary revascularization in the upcoming decade? Eur. Heart J. 33, 16–25 (2011).

    Article  PubMed  Google Scholar 

  71. Zeymer, U. & Scheller, B. PCI in small vessels: the case for a drug-coated balloon based intervention. EuroIntervention 7 (Suppl. K), K57–K60 (2011).

    Article  PubMed  Google Scholar 

  72. Byrne, R. A. & Kastrati, A. Lesions in small coronary vessels disease: should drug-coated balloons replace drug-eluting stents as the treatment of choice? EuroIntervention 7 (Suppl. K), K47–K52 (2011).

    Article  PubMed  Google Scholar 

  73. Unverdorben, M. et al. Treatment of small coronary arteries with a paclitaxel-coated balloon catheter. Clin. Res. Cardiol. 99, 165–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Cortese, B. et al. Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial: the PICCOLETO study. Heart 96, 1291–1296 (2010).

    Article  PubMed  Google Scholar 

  75. Latib, A. et al. A randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels: the BELLO (Balloon Elution and Late Loss Optimization) study. J. Am. Coll. Cardiol. 60, 2473–2480 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Alfonso, F., Cárdenas, A., Cuevas, C. & Pérez-Vizcayno, M. J. Paclitaxel-eluting balloons for small-vessel disease. J. Am. Coll. Cardiol. 61, 1831–1832 (2013).

    Article  PubMed  Google Scholar 

  77. Stella, P. R. et al. A multicenter randomized comparison of drug-eluting balloon plus bare-metal stent versus bare-metal stent versus drug-eluting stent in bifurcation lesions treated with a single-stenting technique: six-month angiographic and 12-month clinical results of the drug-eluting balloon in bifurcations trial. Catheter. Cardiovasc. Interv. 80, 1138–1146 (2012).

    Article  PubMed  Google Scholar 

  78. Loh, J. P. & Waksman, R. Paclitaxel drug-coated balloons: a review of current status and emerging applications in native coronary artery de novo lesions. JACC Cardiovasc. Interv. 5, 1001–1012 (2012).

    Article  PubMed  Google Scholar 

  79. Norgren, L. et al. Inter-society consensus for the management of peripheral arterial disease. Int. Angiol. 26, 81–157 (2007).

    CAS  PubMed  Google Scholar 

  80. Schillinger, M. et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354, 1879–1888 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Krankenberg, H. et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the Femoral Artery Stenting Trial (FAST). Circulation 116, 285–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Tepe, G. et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N. Engl. J. Med. 358, 689–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Werk, M. et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 118, 1358–1365 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Werk, M. et al. Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ. Cardiovasc. Interv. 5, 831–840 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Cassese, S. et al. Paclitaxel-coated versus uncoated balloon angioplasty reduces target lesion revascularization in patients with femoropopliteal arterial disease: a meta-analysis of randomized trials. Circ. Cardiovasc. Interv. 5, 582–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Micari, A. et al. 2-year results of paclitaxel-eluting balloons for femoropopliteal artery disease: evidence from a multicenter registry. JACC Cardiovasc. Interv. 6, 282–289 (2013).

    Article  PubMed  Google Scholar 

  87. Stabile, E. et al. Drug-eluting balloon for treatment of superficial femoral artery in-stent restenosis. J. Am. Coll. Cardiol. 60, 1739–1742 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Fusaro, M., Cassese, S. & Byrne, R. A. How should I treat a restenosis after superficial femoral artery stenting? EuroIntervention 8, 1342–1345 (2013).

    Article  PubMed  Google Scholar 

  89. Schmidt, A. et al. First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J. Am. Coll. Cardiol. 58, 1105–1109 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Fanelli, F. et al. Lower limb multilevel treatment with drug-eluting balloons: 6-month results from the DEBELLUM randomized trial. J. Endovasc. Ther. 19, 571–580 (2012).

    Article  PubMed  Google Scholar 

  91. Liistro, F. et al. Drug-Eluting Balloon in peripherAl inTErvention for Below the Knee Angioplasty Evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation 128, 615–621 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    Article  PubMed  Google Scholar 

  93. Bonaventura, K. et al. Cost-effectiveness of paclitaxel-coated balloon angioplasty and paclitaxel-eluting stent implantation for treatment of coronary in-stent restenosis in patients with stable coronary artery disease. Clin. Res. Cardiol. 101, 573–584 (2012).

    Article  PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  95. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  96. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  97. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  98. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  99. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  100. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  101. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  102. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  103. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  104. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  105. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  106. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  107. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  108. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  109. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  110. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  111. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  112. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  113. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  114. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  115. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  116. Current Controlled Trials Ltd. ControlledTrials.com [online], (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching the data for this article, discussion of its content, and to writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Adnan Kastrati.

Ethics declarations

Competing interests

M. Joner declares that he has received research support from Abbott, Biotronik, Cardionovum, Medtronic, and Zorion; and medical and lecture fees from Abbott, Biotronik, Medtronic, and St. Jude Medical. A. Kastrati declares that he has received lecture fees from Biosensors, Biotronik, and St. Jude Medical. R. A. Byrne and F. Alfonso declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, R., Joner, M., Alfonso, F. et al. Drug-coated balloon therapy in coronary and peripheral artery disease. Nat Rev Cardiol 11, 13–23 (2014). https://doi.org/10.1038/nrcardio.2013.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing