Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prenatal screening for structural congenital heart disease

Key Points

  • Prenatal diagnosis of congenital heart disease (CHD) is important for investigation of affected fetuses for comorbidities, prognostication, preparation for postnatal management, and parental choice about continuation of pregnancy

  • Historical risk factors, such as a family history of CHD, or fetal risk factors, including increased nuchal translucency, warrant investigation with detailed fetal echocardiography

  • Most fetuses with CHD present in the 'low-risk' population, and prenatal detection depends on recognizing abnormalities during obstetric scans

  • Cardiac anomalies characterized by an abnormal four-chamber view of the heart have a higher detection rate than those in which the abnormality is primarily of the outflow tracts

  • For particular cardiac lesions, including transposition of the great arteries, coarctation of the aorta, and hypoplastic left heart syndrome, prenatal diagnosis improves outcomes

  • Prenatal diagnosis of CHD allows the preparation of postnatal intervention in most instances; in a minority of cases (mainly critical left-heart lesions), fetal cardiac intervention can be considered

Abstract

Congenital heart defects can be diagnosed during fetal life using echocardiography. Prenatal diagnosis allows full investigation of affected fetuses for coexisting abnormalities, and gives time for parents to be informed about the prognosis of the fetus and treatments that might be required. In a minority of cases, where the natural history suggests an unfavourable outcome, prenatal diagnosis provides an opportunity for fetal cardiac intervention. For some cardiac lesions, notably hypoplastic left heart syndrome, transposition of the great arteries, and coarctation of the aorta, prenatal diagnosis has been shown to reduce postnatal morbidity and mortality. Some costs of care, notably the transport of critically ill infants, are reduced by prenatal diagnosis. Prenatal screening programmes typically recommend detailed assessment of fetuses judged to be at high risk of congenital heart disease. However, most cases of congenital heart disease arise in the low-risk population, and detection of affected fetuses in this setting depends on recognizing abnormalities of the heart during the midtrimester scan. Evidence supports the use of structured training interventions and feedback to those undertaking sonographic examinations, to improve the prenatal detection of congenital heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fetal and postnatal circulations.
Figure 2: Sonographic screening for congenital heart disease.

Similar content being viewed by others

References

  1. Hoffman, J. I. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr. Cardiol. 16, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  PubMed  Google Scholar 

  3. Wren, C., Richmond, S. & Donaldson, L. Temporal variability in birth prevalence of cardiovascular malformations. Heart 83, 414–419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jenkins, K. J. et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 2995–3014 (2007).

    Article  PubMed  Google Scholar 

  5. Carvalho, J. S. et al. ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet. Gynecol. 41, 348–359 (2013).

    Article  PubMed  Google Scholar 

  6. Rychik, J. et al. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J. Am. Soc. Echocardiogr. 17, 803–810 (2004).

    Article  PubMed  Google Scholar 

  7. The American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of fetal echocardiography. J. Ultrasound Med. 30, 127–136 (2011).

  8. Allan, L. et al. Recommendations for the practice of fetal cardiology in Europe. Cardiol. Young 14, 109–114 (2004).

    Article  PubMed  Google Scholar 

  9. Public Health England. NHS Fetal Anomaly Screening Programme: Standards and Policies [online], (2014).

  10. Hyett, J., Perdu, M., Sharland, G., Snijders, R. & Nicolaides, K. H. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10–14 weeks of gestation: population based cohort study. BMJ 318, 81–85 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghi, T., Huggon, I., Zosmer, N. & Nicolaides, K. Incidence of major structural cardiac defects associated with increased nuchal translucency but normal karyotype. Ultrasound Obstet. Gynecol. 18, 610–614 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zosmer, N., Souter, V., Chan, C., Huggon, I. & Nicolaides, K. Early diagnosis of major cardiac defects in chromosomally normal fetuses with increased nuchal translucency. Br. J. Obstet. Gynaecol. 106, 829–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Makrydimas, G. et al. Nuchal translucency and fetal cardiac defects: a pooled analysis of major fetal echocardiography centers. Am. J. Obstet. Gynecol. 192, 89–95 (2005).

    Article  PubMed  Google Scholar 

  14. Sotiriadis, A., Papatheodorou, S., Eleftheriades, M. & Makrydimas, G. Nuchal translucency and major congenital heart defects in fetuses with normal karyotype: a meta-analysis. Ultrasound Obstet. Gynecol. 42, 383–389 (2013).

    CAS  PubMed  Google Scholar 

  15. Pereira, S., Ganapathy, R., Syngelaki, A., Maiz, N. & Nicolaides, K. H. Contribution of fetal tricuspid regurgitation in first-trimester screening for major cardiac defects. Obstet. Gynecol. 117, 1384–1391 (2011).

    Article  PubMed  Google Scholar 

  16. Maiz, N., Plasencia, W., Dagklis, T., Faros, E. & Nicolaides, K. Ductus venosus Doppler in fetuses with cardiac defects and increased nuchal translucency thickness. Ultrasound Obstet. Gynecol. 31, 256–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Maiz, N. & Nicolaides, K. Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac defects and monochorionic twin complications. Fetal Diagn. Ther. 28, 65–71 (2010).

    Article  PubMed  Google Scholar 

  18. Morain, S., Greene, M. & Mello, M. A new era in noninvasive prenatal testing. N. Engl. J. Med. 369, 499–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Gil, M., Quezada, M., Bregant, B., Ferraro, M. & Nicolaides, K. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet. Gynecol. 42, 34–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nicolaides, K., Syngelaki, A., Poon, L., Gil, M. & Wright, D. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing. Fetal Diagn. Ther. http://dx.doi.org/10.1159/000356066.

  21. Gardiner, H. First-trimester fetal echocardiography: routine practice or research tool? Ultrasound Obstet. Gynecol. 42, 611–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Gill, H., Splitt, M., Sharland, G. & Simpson, J. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J. Am. Coll. Cardiol. 42, 923–929 (2003).

    Article  PubMed  Google Scholar 

  23. Burn, J. et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet 351, 311–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Fesslova, V. et al. Recurrence of congenital heart disease in cases with familial risk screened prenatally by echocardiography. J. Pregnancy 2011, 368067 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Allan, L., Crawford, D., Chita, S., Anderson, R. & Tynan, M. Familial recurrence of congenital heart disease in a prospective series of mothers referred for fetal echocardiography. Am. J. Cardiol. 58, 334–337 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Hinton, R. et al. Hypoplastic left heart syndrome is heritable. J. Am. Coll. Cardiol. 50, 1590–1595 (2007).

    Article  PubMed  Google Scholar 

  27. Alonso, S. et al. Heterotaxia syndrome and autosomal dominant inheritance. Am. J. Med. Genet. 56, 12–15 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Yagel, S., Cohen, S. M. & Achiron, R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet. Gynecol. 17, 367–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bull, C. Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. British Paediatric Cardiac Association. Lancet 354, 1242–1247 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Levy, D. et al. Improved prenatal detection of congenital heart disease in an integrated health care system. Pediatr. Cardiol. 34, 670–679 (2013).

    Article  PubMed  Google Scholar 

  31. Allan, L. Antenatal diagnosis of heart disease. Heart 83, 367 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilboa, S. et al. Association between prepregnancy body mass index and congenital heart defects. Am. J. Obstet. Gynecol. 202, 510 (2010).

    Article  Google Scholar 

  33. Hunter, S., Heads, A., Wyllie, J. & Robson, S. Prenatal diagnosis of congenital heart disease in the northern region of England: benefits of a training programme for obstetric ultrasonographers. Heart 84, 294–298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McBrien, A., Sands, A., Craig, B., Dornan, J. & Casey, F. Impact of a regional training program in fetal echocardiography for sonographers on the antenatal detection of major congenital heart disease. Ultrasound Obstet. Gynecol. 36, 279–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Sharland, G. Routine fetal cardiac screening: what are we doing and what should we do? Prenat. Diagn. 24, 1123–1129 (2004).

    Article  PubMed  Google Scholar 

  36. Sharland, G. & Allan, L. Screening for congenital heart disease prenatally. Results of a 2 1/2-year study in the South East Thames Region. Br. J. Obstet. Gynaecol. 99, 220–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Jaudi, S. et al. Online audit and feedback improve fetal second-trimester four-chamber view images: a randomised controlled trial. Prenat. Diagn. 33, 959–964 (2013).

    Article  PubMed  Google Scholar 

  38. Jegatheeswaran, A. et al. Costs of prenatal detection of congenital heart disease. Am. J. Cardiol. 108, 1808–1814 (2011).

    Article  PubMed  Google Scholar 

  39. Gardiner, H. et al. Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit with maternity data. Heart 100, 375–382 (2014).

    Article  PubMed  Google Scholar 

  40. Marek, J., Tomek, V., Skovranek, J., Povysilova, V. & Samanek, M. Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart 97, 124–130 (2011).

    Article  PubMed  Google Scholar 

  41. Allan, L. et al. Prospective diagnosis of 1,006 consecutive cases of congenital heart disease in the fetus. J. Am. Coll. Cardiol. 23, 1452–1458 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Jowett, V. et al. Sonographic predictors of surgery in fetal coarctation of the aorta. Ultrasound Obstet. Gynecol. 40, 47–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Sharland, G., Chan, K. & Allan, L. Coarctation of the aorta: difficulties in prenatal diagnosis. Br. Heart J. 71, 70–75 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hornberger, L., Sahn, D., Kleinman, C., Copel, J. & Silverman, N. Antenatal diagnosis of coarctation of the aorta: a multicenter experience. J. Am. Coll. Cardiol. 23, 417–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Matsui, H., Mellander, M., Roughton, M., Jicinska, H. & Gardiner, H. Morphological and physiological predictors of fetal aortic coarctation. Circulation 118, 1793–1801 (2008).

    Article  PubMed  Google Scholar 

  46. Pasquini, L. et al. Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. Ultrasound Obstet. Gynecol. 29, 628–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Chubb, H. & Simpson, J. The use of Z-scores in paediatric cardiology. Ann. Pediatr. Cardiol. 5, 179–184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Head, C., Jowett, V., Sharland, G. & Simpson, J. Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal life. Heart 91, 1070–1074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allan, L. & Sharland, G. The echocardiographic diagnosis of totally anomalous pulmonary venous connection in the fetus. Heart 85, 433–437 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feller Printz, B. & Allan, L. Abnormal pulmonary venous return diagnosed prenatally by pulsed Doppler flow imaging. Ultrasound Obstet. Gynecol. 9, 347–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Seale, A. et al. Total anomalous pulmonary venous connection: impact of prenatal diagnosis. Ultrasound Obstet. Gynecol. 40, 310–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto, Y. & Hornberger, L. Progression of outflow tract obstruction in the fetus. Early Hum. Dev. 88, 279–285 (2012).

    Article  PubMed  Google Scholar 

  53. Johnson, P., Maxwell, D. J., Tynan, M. J. & Allan, L. D. Intracardiac pressures in the human fetus. Heart 84, 59–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mosimann, B., Zidere, V., Simpson, J. & Allan, L. Outcome and requirement for surgical repair following prenatal diagnosis of ventricular septal defect. Ultrasound Obstet. Gynecol. http://dx.doi.org/10.1002/uog.13284.

  55. Paladini, D. et al. Characterization and natural history of ventricular septal defects in the fetus. Ultrasound Obstet. Gynecol. 16, 118–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Carvalho, J., Moscoso, G. & Ville, Y. First-trimester transabdominal fetal echocardiography. Lancet 351, 1023–1027 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Carvalho, M. et al. Detection of fetal structural abnormalities at the 11–14 week ultrasound scan. Prenat. Diagn. 22, 1–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Yagel, S., Cohen, S. & Messing, B. First and early second trimester fetal heart screening. Curr. Opin. Obstet. Gynecol. 19, 183–190 (2007).

    Article  PubMed  Google Scholar 

  59. Simpsom, J., Jones, A., Callaghan, N. & Sharland, G. Accuracy and limitations of transabdominal fetal echocardiography at 12–15 weeks of gestation in a population at high risk for congenital heart disease. BJOG 107, 1492–1497 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Persico, N. et al. Fetal echocardiography at 11–13 weeks by transabdominal high-frequency ultrasound. Ultrasound Obstet. Gynecol. 37, 296–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Zidere, V., Bellsham-Revell, H., Persico, N. & Allan, L. Comparison of echocardiographic findings in fetuses at less than 15 weeks' gestation with later cardiac evaluation. Ultrasound Obstet. Gynecol. 42, 679–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Arya, B., Glickstein, J., Levasseur, S. & Williams, I. Parents of children with congenital heart disease prefer more information than cardiologists provide. Congenit. Heart Dis. 8, 78–85 (2013).

    Article  PubMed  Google Scholar 

  63. Prsa, M., Holly, C., Carnevale, F., Justino, H. & Rohlicek, C. Attitudes and practices of cardiologists and surgeons who manage HLHS. Pediatrics 125, e625–e630 (2010).

    Article  PubMed  Google Scholar 

  64. Kon, A., Ackerson, L. & Lo, B. How pediatricians counsel parents when no “best-choice” management exists: lessons to be learned from hypoplastic left heart syndrome. Arch. Pediatr. Adolesc. Med. 158, 436–441 (2004).

    Article  PubMed  Google Scholar 

  65. Williams, I. A. et al. Parental understanding of neonatal congenital heart disease. Pediatr. Cardiol. 29, 1059–1065 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hilton-Kamm, D., Chang, R.-K. & Sklansky, M. Prenatal diagnosis of hypoplastic left heart syndrome: impact of counseling patterns on parental perceptions and decisions regarding termination of pregnancy. Pediatr. Cardiol. 33, 1402–1410 (2012).

    Article  PubMed  Google Scholar 

  67. Hilton-Kamm, D., Sklansky, M. & Chang, R.-K. How not to tell parents about their child's new diagnosis of congenital heart disease: an Internet survey of 841 parents. Pediatr. Cardiol. 35, 239–252 (2014).

    Article  PubMed  Google Scholar 

  68. Marino, B. et al. Quality-of-life concerns differ among patients, parents, and medical providers in children and adolescents with congenital and acquired heart disease. Pediatrics 123, e708–e715 (2009).

    Article  PubMed  Google Scholar 

  69. Langford, K., Sharland, G. & Simpson, J. Relative risk of abnormal karyotype in fetuses found to have an atrioventricular septal defect (AVSD) on fetal echocardiography. Prenat. Diagn. 25, 137–139 (2005).

    Article  PubMed  Google Scholar 

  70. Pepas, L. P. et al. An echocardiographic study of tetralogy of Fallot in the fetus and infant. Cardiol. Young 13, 240–247 (2003).

    Article  PubMed  Google Scholar 

  71. Sharland, G. What should be provided by a service for fetal cardiology? Cardiol. Young 10, 625–635 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Rempel, G., Cender, L., Lynam, M., Sandor, G. & Farquharson, D. Parents' perspectives on decision making after antenatal diagnosis of congenital heart disease. J. Obstet. Gynecol. Neonatal Nurs. 33, 64–70 (2004).

    Article  PubMed  Google Scholar 

  73. Brosig, C. L., Whitstone, B. N., Frommelt, M. A., Frisbee, S. J. & Leuthner, S. R. Psychological distress in parents of children with severe congenital heart disease: the impact of prenatal versus postnatal diagnosis. J. Perinatol. 27, 687–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Tworetzky, W. et al. Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation 103, 1269–1273 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sivarajan, V., Penny, D. J., Filan, P., Brizard, C. & Shekerdemian, L. S. Impact of antenatal diagnosis of hypoplastic left heart syndrome on the clinical presentation and surgical outcomes: the Australian experience. J. Paediatr. Child Health 45, 112–117 (2009).

    Article  PubMed  Google Scholar 

  76. Kumar, R. K., Newburger, J. W., Gauvreau, K., Kamenir, S. A. & Hornberger, L. K. Comparison of outcome when hypoplastic left heart syndrome and transposition of the great arteries are diagnosed prenatally versus when diagnosis of these two conditions is made only postnatally. Am. J. Cardiol. 83, 1649–1653 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Mahle, W., Clancy, R., McGaurn, S., Goin, J. & Clark, B. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 107, 1277–1282 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Franklin, O. et al. Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart 87, 67–69 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bonnet, D. et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 99, 916–918 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Jouannic, J.-M. et al. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 110, 1743–1746 (2004).

    Article  PubMed  Google Scholar 

  81. Tzifa, A., Barker, C., Tibby, S. M. & Simpson, J. M. Prenatal diagnosis of pulmonary atresia: impact on clinical presentation and early outcome. Arch. Dis. Child. Fetal Neonatal Ed. 92, F199–F203 (2007).

    Article  PubMed  Google Scholar 

  82. Mats, M. & Jan, S. Failure to diagnose critical heart malformations in newborns before discharge-an increasing problem? Acta Paediatrica 95 (2007).

  83. Ewer, A. et al. Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study. Lancet 378, 785–794 (2011).

    Article  PubMed  Google Scholar 

  84. Rogers, L. et al. Mitral valve dysplasia syndrome: a unique form of left-sided heart disease. J. Thorac. Cardiovasc. Surg. 142, 1381–1387 (2011).

    Article  PubMed  Google Scholar 

  85. Vogel, M. et al. Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops: pathophysiology, outcomes, and preliminary experience with pre-natal cardiac intervention. J. Am. Coll. Cardiol. 57, 348–355 (2011).

    Article  PubMed  Google Scholar 

  86. Divanovic´, A. et al. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. J. Thorac. Cardiovasc. Surg. 141, 988–994 (2011).

    Article  PubMed  Google Scholar 

  87. Michelfelder, E., Gomez, C., Border, W., Gottliebson, W. & Franklin, C. Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation 112, 2974–2979 (2005).

    Article  PubMed  Google Scholar 

  88. Simpson, J. & Sharland, G. Natural history and outcome of aortic stenosis diagnosed prenatally. Heart 77, 205–210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mäkikallio, K. et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation 113, 1401–1405 (2006).

    Article  PubMed  Google Scholar 

  90. Gardiner, H. M. et al. Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J. Am. Coll. Cardiol. 51, 1299–1308 (2008).

    Article  PubMed  Google Scholar 

  91. Salvin, J. W. et al. Fetal tricuspid valve size and growth as predictors of outcome in pulmonary atresia with intact ventricular septum. Pediatrics 118, e415–e420 (2006).

    Article  PubMed  Google Scholar 

  92. Andrews, R. E., Tibby, S. M., Sharland, G. K. & Simpson, J. M. Prediction of outcome of tricuspid valve malformations diagnosed during fetal life. Am. J. Cardiol. 101, 1046–1050 (2008).

    Article  PubMed  Google Scholar 

  93. Fouron, J. C. Fetal arrhythmias: the Saint-Justine hospital experience. Prenat. Diagn. 24, 1068–1080 (2004).

    Article  PubMed  Google Scholar 

  94. Jaeggi, E. T. et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation 124, 1747–1754 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Simpson, J. M. & Sharland, G. K. Fetal tachycardias: management and outcome of 127 consecutive cases. Heart 79, 576–581 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jaeggi, E. et al. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation 110, 1542–1548 (2004).

    Article  PubMed  Google Scholar 

  97. Rosenthal, E., Gordon, P. A., Simpson, J. M. & Sharland, G. K. Letter regarding article by Jaeggi et al., “transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease”. Circulation 111, e287–e288 (2005).

    Article  PubMed  Google Scholar 

  98. Eliasson, H. et al. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation 124, 1919–1926 (2011).

    Article  PubMed  Google Scholar 

  99. McElhinney, D. et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 120, 1482–1490 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. McElhinney, D., Tworetzky, W. & Lock, J. Current status of fetal cardiac intervention. Circulation 121, 1256–1263 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Arzt, W. et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet. Gynecol. 37, 689–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Makikallio, K. et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation 113, 1401–1405 (2006).

    Article  PubMed  Google Scholar 

  103. Tworetzky, W. et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 110, 2125–2131 (2004).

    Article  PubMed  Google Scholar 

  104. Emani, S. M. et al. Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J. Am. Coll. Cardiol. 60, 1966–1974 (2012).

    Article  PubMed  Google Scholar 

  105. Friedman, K. G. et al. Postnatal left ventricular diastolic function after fetal aortic valvuloplasty. Am. J. Cardiol. 108, 556–560 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Simpson, J. M. Fetal cardiac interventions: worth it? Heart 95, 1653–1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Tulzer, G. et al. Fetal pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet 360, 1567–1568 (2002).

    Article  PubMed  Google Scholar 

  108. Tworetzky, W. et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics 124, e510–e518 (2009).

    Article  PubMed  Google Scholar 

  109. Rychik, J., Rome, J. J., Collins, M. H., DeCampli, W. M. & Spray, T. L. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J. Am. Coll. Cardiol. 34, 554–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Seed, M., Bradley, T., Bourgeois, J., Jaeggi, E. & Yoo, S. J. Antenatal MR imaging of pulmonary lymphangiectasia secondary to hypoplastic left heart syndrome. Pediatr. Radiol. 39, 747–749 (2009).

    Article  PubMed  Google Scholar 

  111. Marshall, A. C. et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat. Diagn. 28, 1023–1028 (2008).

    Article  PubMed  Google Scholar 

  112. Kalish, B. T. et al. Technical challenges of atrial septal stent placement in fetuses with hypoplastic left heart syndrome and intact atrial septum. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.25098.

  113. Chaturvedi, R. R., Ryan, G., Seed, M., van Arsdell, G. & Jaeggi, E. T. Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. Int. J. Cardiol. 168, 2029–2036 (2013).

    Article  PubMed  Google Scholar 

  114. Vida, V. et al. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: surgical experience from a single center. Ann. Thorac. Surg. 84, 581–585 (2007).

    Article  PubMed  Google Scholar 

  115. Warrier, D., Saraf, R., Maheshwari, S., Suresh, P. & Shah, S. Awareness of fetal echo in Indian scenario. Ann. Pediatr. Cardiol. 5, 156–159 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vaidyanathan, B., Kumar, S., Sudhakar, A. & Kumar, R. K. Conotruncal anomalies in the fetus: referral patterns and pregnancy outcomes in a dedicated fetal cardiology unit in South India. Ann. Pediatr. Cardiol. 6, 15–20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S. & Ewer, A. K. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet 379, 2459–2464 (2012).

    Article  PubMed  Google Scholar 

  118. Sairam, S. & Carvalho, J. Early fetal echocardiography and anomaly scan in fetuses with increased nuchal translucency. Early Hum. Dev. 88, 269–272 (2012).

    Article  PubMed  Google Scholar 

  119. Adriaanse, B. et al. Interobserver agreement in detailed prenatal diagnosis of congenital heart disease by telemedicine using four-dimensional ultrasound with spatiotemporal image correlation. Ultrasound Obstet. Gynecol. 39, 203–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Zidere, V., Pushparajah, K., Allan, L. D. & Simpson, J. M. Three-dimensional fetal echocardiography for prediction of postnatal surgical approach in double outlet right ventricle: a pilot study. Ultrasound Obstet. Gynecol. 42, 421–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Viñals, F. Current experience and prospect of internet consultation in fetal cardiac ultrasound. Fetal Diagn. Ther. 30, 83–87 (2011).

    Article  PubMed  Google Scholar 

  122. Viñals, F., Poblete, P. & Giuliano, A. Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet. Gynecol. 22, 388–394 (2003).

    Article  PubMed  Google Scholar 

  123. Yeo, L. & Romero, R. Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet. Gynecol. 42, 268–284 (2013).

    Article  PubMed  Google Scholar 

  124. McCrossan, B. A., Sands, A. J., Kileen, T., Cardwell, C. R. & Casey, F. A. Fetal diagnosis of congenital heart disease by telemedicine. Arch. Dis. Child. Fetal Neonatal Ed. 96, F394–F397 (2011).

    Article  PubMed  Google Scholar 

  125. McCrossan, B. A., Sands, A. J., Kileen, T., Doherty, N. N. & Casey, F. A. A fetal telecardiology service: patient preference and socio-economic factors. Prenat. Diagn. 32, 883–887 (2012).

    PubMed  Google Scholar 

  126. Seed, M. et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J. Cardiovasc. Magn. Reson. 14, 79 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Manganaro, L. et al. Magnetic resonance imaging of fetal heart: anatomical and pathological findings. J. Matern. Fetal Neonatal Med. http://dx.doi.org/10.3109/14767058.2013.852174.

  128. Wielandner, A., Mlczoch, E., Prayer, D. & Berger-Kulemann, V. Potential of magnetic resonance for imaging the fetal heart. Semin. Fetal Neonatal Med. 18, 286–297 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to John M. Simpson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, L., Simpson, J. Prenatal screening for structural congenital heart disease. Nat Rev Cardiol 11, 323–334 (2014). https://doi.org/10.1038/nrcardio.2014.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing