Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanism, diagnosis, and treatment of outflow tract tachycardia

Key Points

  • Outflow tract tachycardia originates from the right or left ventricular outflow tracts and from the region of the tricuspid and mitral valve annuli

  • In most outflow tract tachycardia, a left bundle branch block inferior axis morphology is observed

  • Outflow tract tachycardia is sensitive to adenosine and is characteristically caused by cAMP-mediated triggered activity

  • Definitive therapy is achieved through catheter ablation of the focal site of origin of the arrhythmia

  • The prognosis of outflow tract arrhythmia is favourable, with two uncommon exceptions: cardiomyopathy or polymorphic ventricular tachycardia induced by outflow tract premature ventricular contractions

Abstract

Idiopathic ventricular arrhythmia is a generic term for a spectrum of arrhythmias that occur in the absence of structural heart disease or ion channelopathy. These arrhythmias include monomorphic premature ventricular contractions (PVCs), nonsustained monomorphic ventricular tachycardia (VT), and sustained VT. Most idiopathic ventricular arrhythmias originate from the right and left ventricular outflow tracts and include sites accessed from the aortic sinuses of Valsalva. Outflow tract arrhythmia is identified by an electrocardiographic pattern consistent with a left bundle branch block inferior axis morphology. Characteristically, outflow tract VT is caused by cAMP-mediated triggered activity, and is terminated by administration of adenosine. Outflow tract arrhythmias are focal and, therefore, are readily amenable to definitive treatment with catheter-based radiofrequency ablation. Although arrhythmia might be associated with reversible PVC-mediated cardiomyopathy, and infrequently with PVC-induced polymorphic VT or ventricular fibrillation, prognosis is generally favourable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical relationship between the RVOT and LVOT.
Figure 2: Anatomical relationship between left ventricular myocardial crescents and the aortic sinuses.
Figure 3: Signal transduction for initiation and termination of outflow tract tachycardia owing to cAMP-mediated triggered activity.
Figure 4: Electrocardiographic characteristics of premature ventricular contractions originating from the anterior free wall of the RVOT, posterior RVOT, and para-Hisian region.
Figure 5: Electrocardiographic patterns of premature ventricular contractions originating from the coronary cusps.
Figure 6: Electrocardiographic characteristics of premature ventricular contractions originating from the LV summit and ventricular crux.
Figure 7: Electrocardiographic characteristics of mitral annular premature ventricular contractions.

Similar content being viewed by others

References

  1. Kim, R. J. et al. Clinical and electrophysiological spectrum of idiopathic ventricular outflow tract arrhythmias. J. Am. Coll. Cardiol. 49, 2035–2043 (2007).

    Article  PubMed  Google Scholar 

  2. Tandri, H. et al. Findings on magnetic resonance imaging in idiopathic right ventricular outflow tachycardia. Am. J. Cardiol. 94, 1441–1445 (2004).

    Article  PubMed  Google Scholar 

  3. Markowitz, S. M. et al. Reappraisal of cardiac magnetic resonance imaging in idiopathic outflow tract arrhythmias. J. Cardiovasc. Electrophysiol. 25, 1328–1335 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Lerman, B. B., Belardinelli, L., West, G. A., Berne, R. M. & DiMarco, J. P. Adenosine-sensitive ventricular tachycardia: evidence suggesting cAMP-mediated triggered activity. Circulation 74, 270–280 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Lerman, B. B. Mechanism of outflow tract tachycardia. Heart Rhythm 4, 973–976 (2007).

    Article  PubMed  Google Scholar 

  6. Yarlagadda, R. K. et al. Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 112, 1092–1097 (2005).

    Article  PubMed  Google Scholar 

  7. Takemoto, M. et al. Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J. Am. Coll. Cardiol. 45, 1259–1265 (2005).

    Article  PubMed  Google Scholar 

  8. Bogun, F. et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm 4, 863–867 (2007).

    Article  PubMed  Google Scholar 

  9. Viskin, S., Rosso, R., Rogowski, O. & Belhassen, B. The “short-coupled” variant of right ventricular outflow ventricular tachycardia: a not-so-benign form of benign ventricular tachycardia? J. Cardiovasc. Electrophysiol. 16, 912–916 (2005).

    Article  PubMed  Google Scholar 

  10. Lerman, B. B. Outflow tract ventricular arrhythmias: an update. Trends Cardiovasc. Med. http://dx.doi.org/10.1016/j.tcm.2015.01.011.

  11. Sutton, J. P. III, Ho, S. Y. & Anderson, R. H. The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. Ann. Thorac. Surg. 59, 419–427 (1995).

    Article  PubMed  Google Scholar 

  12. Anderson, R. H. Clinical anatomy of the aortic root. Heart 84, 670–673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ho, S. Y. Anatomic insights for catheter ablation of ventricular tachycardia. Heart Rhythm 6 (8 Suppl.), S77–S80 (2009).

    Article  PubMed  Google Scholar 

  14. Ho, S. Y. Structure and anatomy of the aortic root. Eur. J. Echocardiogr. 10, i3–i10 (2009).

    Article  PubMed  Google Scholar 

  15. Yamada, T., Litovsky, S. H. & Kay, G. N. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 1, 396–404 (2008).

    Article  PubMed  Google Scholar 

  16. Hai, J. J., Lachman, N., Syed, F. F., Desimone, C. V. & Asirvatham, S. J. The anatomic basis for ventricular arrhythmia in the normal heart: what the student of anatomy needs to know. Clin. Anat. 27, 885–893 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, C. F. et al. Ubiquitous myocardial extensions into the pulmonary artery demonstrated by integrated intracardiac echocardiography and electroanatomic mapping: changing the paradigm of idiopathic right ventricular outflow tract arrhythmias. Circ. Arrhythm. Electrophysiol. 7, 691–700 (2014).

    Article  PubMed  Google Scholar 

  18. Lerman, B. B. Response of nonreentrant catecholamine and mediated ventricular tachycardia to endogenous adenosine and acetylcholine: evidence for receptor mediated effects. Circulation 87, 382–390 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Lerman, B. B. et al. Mechanism of repetitive monomorphic ventricular tachycardia. Circulation 92, 421–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lerman, B. B., Stein, K. M. & Markowitz, S. M. Adenosine-sensitive ventricular tachycardia: a conceptual approach. J. Cardiovas. Electrophysiol. 7, 559–569 (1996).

    Article  CAS  Google Scholar 

  21. Ng, K. S., Wen, M. S., Yeh, S. J., Lin, F. C. & Wu, D. The effects of adenosine on idiopathic ventricular tachycardia. Am. J. Cardiol. 74, 195–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Griffith, M. J., Garratt, C. J., Rowland, E., Ward, D. E. & Camm, A. J. Effects of intravenous adenosine on verapamil sensitive “idiopathic” ventricular tachycardia. Am. J. Cardiol. 73, 759–764 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Iwai, S. et al. Right and left ventricular outflow tract tachycardias: evidence for a common electrophysiologic mechanism. J. Cardiovasc. Electrophysiol. 17, 1052–1058 (2006).

    Article  PubMed  Google Scholar 

  24. Schlotthauer, K. & Bers, D. M. Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization: underlying mechanism and threshold for triggered action potentials. Circ. Res. 87, 774–780 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Katra, R. P. & Laurita, K. R. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ. Res. 96, 535–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, H. & Lederer, W. J. Calcium sparks. Physiol. Rev. 88, 1491–1545 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Shiferaw, Y., Aistrup, G. L. & Wasserstrom, A. Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovas. Res. 95, 265–268 (2012).

    Article  CAS  Google Scholar 

  28. Lerman, B. B. et al. Mechanism-specific effects of adenosine on ventricular tachycardia. J. Cardiovasc. Electrophysiol. 25, 1350–1358 (2014).

    PubMed  Google Scholar 

  29. Song, Y., Thedford, S., Lerman, B. B. & Belardinelli, L. Adenosine sensitive afterdepolarizations and triggered activity in guinea pig ventricular myocytes. Circ. Res. 70, 743–753 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Belardinelli, L., Shryock, J. C., Song, Y., Wang, D. & Srinivas, M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J. 9, 359–365 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Dixit, S., Gersteinfeld, E. P., Callans, D. J. & Marchlinski, F. E. Electrocardiographic patterns of superior right ventricular outflow tract tachycardias: distinguishing sepal and free-wall sites of origins. J. Cardiovasc. Electrophysiol. 14, 1–7 (2003).

    Article  PubMed  Google Scholar 

  32. Tada, H. et al. Prevalence and electrocardiographic characteristics of idiopathic ventricular arrhythmia originating in the free wall of the right ventricular outflow tract. Circ. J. 68, 909–914 (2004).

    Article  PubMed  Google Scholar 

  33. Kamakura, S. et al. Localization of optimal ablation site of idiopathic ventricular tachycardia from right and left ventricular outflow tract by body surface ECG. Circulation 98, 1525–1533 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Timmermans, C., Rodriguez, L. M., Medeiros, A., Crijns, H. J. G. M. & Wellens, H. J. J. Radiofrequency catheter ablation of idiopathic ventricular tachycardia originating in the main stem of the pulmonary artery. J. Cardiovasc. Electrophysiol. 13, 281–284 (2002).

    Article  PubMed  Google Scholar 

  35. Sekiguchi, Y. et al. Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J. Am. Coll. Cardiol. 45, 887–895 (2005).

    Article  PubMed  Google Scholar 

  36. Srivathsan, K. S. et al. Mechanisms and utility of discrete great arterial potentials in the ablation of outflow tract ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 1, 30–38 (2008).

    Article  PubMed  Google Scholar 

  37. Krittayaphong, R., Bhuripanyo, K., Punlee, K., Kangkagate, C. & Chaithiraphan, S. Effect of atenolol on symptomatic ventricular arrhythmia without structural heart disease: a randomized placebo-controlled study. Am. Heart J. 144, e10 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ling, Z. et al. Radiofrequency ablation versus antiarrhythmis medication for treatment of ventricular premature beats from the right ventricular outflow tract. Prospective randomized study. Circ. Arrhythm. Electrophysiol. 7, 237–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Zipes, D. P. et al. ACC/AHA/ESC 2006 guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114, e385–e484 (2006).

    Article  PubMed  Google Scholar 

  40. Azegami, K., Wilber, D. J., Arruda, M., Lin, A. C. & Denman, R. A. Spatial resolution of pacemapping and activation mapping in patients with idiopathic right ventricular outflow tract tachycardia. J. Cardiovasc. Electrophysiol. 16, 823–829 (2005).

    Article  PubMed  Google Scholar 

  41. Bogun, F. et al. Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract. Heart Rhythm 5, 339–344 (2008).

    Article  PubMed  Google Scholar 

  42. Yamada, T. et al. Idiopathic ventricular arrhythmias originating from the aortic root: prevalence, electrocardiographic and electrophysiologic characteristics, and results of radiofrequency catheter ablation. J. Am. Coll. Cardiol. 52, 139–147 (2008).

    Article  PubMed  Google Scholar 

  43. Yamada, T. et al. Focal ventricular arrhythmias originating from the left ventricle adjacent to the membranous septum. Europace 12, 1467–1474 (2010).

    Article  PubMed  Google Scholar 

  44. Ouyang, F. et al. Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp. J. Am. Coll. Cardiol. 39, 500–508 (2002).

    Article  PubMed  Google Scholar 

  45. Lin, D. et al. Twelve-lead electrocardiographic characteristics of the aortic cusp region guided by intracranial echocardiography and electro anatomic mapping. Heart Rhythm 5, 663–669 (2008).

    Article  PubMed  Google Scholar 

  46. Bala, R. et al. Electrocardiographic and electrophysiologic features of ventricular arrhythmias originating from the right/left coronary cusp commissure. Heart Rhythm 7, 312–322. (2010).

    Article  PubMed  Google Scholar 

  47. Yamada, T. et al. Electrocardiographic characteristics of ventricular arrhythmias originating from the junction of the left and right coronary sinuses of Valsalva in the aorta: the activation pattern as a rationale, for the electrocardiographic characteristics. Heart Rhythm 5, 184–192 (2008).

    Article  PubMed  Google Scholar 

  48. Hachiya, H. et al. Discrete prepotential as an indicator of successful ablation in patients with coronary cusp ventricular arrhythmia. Circ. Arrhythm. Electrophysiol. 6, 898–904 (2013).

    Article  PubMed  Google Scholar 

  49. Yamada, T. et al. Preferential conduction across the ventricular outflow septum in ventricular arrhythmias originating from the aortic sinus cusp. J. Am. Coll. Cardiol. 50, 884–891 (2007).

    Article  PubMed  Google Scholar 

  50. Betensky, B. P. et al. The V2 transition ratio: a new electrocardiographic criterion for distinguishing left from right ventricular outflow tract tachycardia origin. J. Am. Coll. Cardiol. 57, 2255–2262 (2011).

    Article  PubMed  Google Scholar 

  51. Yoshida, N. et al. A novel electrocardiographic criterion for differentiating a left from right ventricular outflow tract tachycardia origin: the V2S/V3R index. J. Cardiovasc. Electrophysiol. 25, 747–759 (2014).

    Article  PubMed  Google Scholar 

  52. Baman, T. S. et al. Mapping and ablation of epicardial idiopathic ventricular arrhythmias from within the coronary venous system. Circ. Arrhythm. Electrophysiol. 3, 274–279 (2010).

    Article  PubMed  Google Scholar 

  53. Daniels, D. V. et al. Idiopathic epicardial left ventricular tachycardia originating remote from the sinus of Valsalva: electrophysiological characteristics, catheter ablation and identification from the 12-lead ECG. Circulation 113, 1659–1666 (2006).

    Article  PubMed  Google Scholar 

  54. Yamada, T. et al. Idiopathic left ventricular arrhythmias originating adjacent to the left aortic sinus of valsalva: electrophysiological rationale for the surface electrocardiogram. J. Cardiovasc. Electrophysiol. 21, 170–176 (2010).

    Article  PubMed  Google Scholar 

  55. Berruezo, A. et al. Electrocardiographic recognition of the epicardial origin of ventricular tachycardias. Circulation 109, 1842–1847 (2004).

    Article  PubMed  Google Scholar 

  56. Yamada, T. et al. Idiopathic ventricular arrhythmias origination from the left ventricular summit. Circ. Arrhythm. Electrophysiol. 3, 616–623 (2010).

    Article  PubMed  Google Scholar 

  57. Nagashima, K. et al. Ventricular arrhythmias near the distal great cardiac vein: challenging arrhythmias for ablation. Circ. Arrhythm. Electrophysiol. 7, 906–912 (2014).

    Article  PubMed  Google Scholar 

  58. Jauregui Abularach, M. E. et al. Ablation of ventricular arrhythmias arising near the anterior epicardial veins from the left sinus of Valsalva region: ECG features, anatomic distance, and outcome. Heart Rhythm 9, 865–873 (2012).

    Article  PubMed  Google Scholar 

  59. Frankel, D. S., Mountantonakis, S. E., Dahu, M. I. & Marchlinski, F. E. Elimination of ventricular arrhythmias originating from the anterior interventricular vein with ablation in the right ventricular outflow tract. Circ. Arrhythm. Electrophysiol. 7, 984–985 (2014).

    Article  PubMed  Google Scholar 

  60. Santangeli, P. et al. Percutaneous epicardial ablation of ventricular arrhythmias arising from the left ventricular summit: outcomes and ECG correlates of success. Circ. Arrhythm. Electrophysiol. 8, 337–343 (2015).

    Article  PubMed  Google Scholar 

  61. Mulpuru, S. K., Feld, G. K., Madani, M. & Sawhney, N. S. A novel, minimally-invasive surgical approach for ablation of ventricular tachycardia originating near the proximal left anterior descending coronary artery. Circ. Arrhythm. Electrophysiol. 5, e95–e97 (2012).

    Article  PubMed  Google Scholar 

  62. Kawamura, M. et al. Idiopathic ventricular arrhythmia origination from the cardiac crux of inferior septum. Circ. Arrhythm. Electrophysiol. 7, 1152–1158 (2014).

    Article  PubMed  Google Scholar 

  63. Doppalapudi, H., Yamada, T., Ramaswamy, K., Ahn, J. & Kay, G. N. Idiopathic focal epicardial ventricular tachycardia originating from the crux of the heart. Heart Rhythm 6, 44–50 (2009).

    Article  PubMed  Google Scholar 

  64. Yamada, T. et al. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential vs. simultaneous unipolar catheter ablation. Circ. Arrhythm. Electrophysiol. 8, 344–352 (2015).

    Article  PubMed  Google Scholar 

  65. Chen, H. et al. Intramural outflow tract ventricular tachycardia: anatomy, mapping and ablation. Circ. Arrhythm. Electrophysiol. 7, 978–981 (2014).

    Article  PubMed  Google Scholar 

  66. Yamada, T., McElderry, H. T., Doppalapudi, H. & Kay, G. N. Evidence of an intramural origin of idiopathic premature ventricular contractions successfully ablation within the great cardiac vein. Pacing Clin. Electrophysiol. 34, e112–e114 (2001).

    Article  Google Scholar 

  67. Yamada, T. et al. Premature ventricular contractions arising from the intramural ventricular septum. Pacing Clin. Electrophysiol. 32, e1–e3 (2009).

    Article  PubMed  Google Scholar 

  68. Yokokawa, M. et al. Intramural idiopathic ventricular arrhythmias origination in the intraventricular septum. Circ. Arrhythm. Electrophysiol. 5, 258–263 (2012).

    Article  PubMed  Google Scholar 

  69. Ip, J. E. et al. Unifying mechanism of sustained idiopathic atrial and ventricular annular tachycardia. Circ. Arrhythm. Electrophysiol. 7, 436–444 (2014).

    Article  PubMed  Google Scholar 

  70. Chen, J. et al. Ventricular arrhythmias origination from the aortomitral continuity: an uncommon variant of left ventricular outflow tract tachycardia. Europace 14, 388–395 (2012).

    Article  PubMed  Google Scholar 

  71. Kumagai, K. et al. Idiopathic left ventricular tachycardia origination from the mitral annulus. J. Cardiovasc. Electrophysiol. 16, 1029–1036 (2005).

    Article  PubMed  Google Scholar 

  72. Tada, H. et al. Idiopathic ventricular arrhythmias arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J. Am. Coll. Cardiol. 45, 877–886 (2005).

    Article  PubMed  Google Scholar 

  73. Yamada, T. et al. Successful transseptal catheter ablation of premature ventricular contractions arising from the mitral annulus: a case with a pure annular origin. Pacing Clin. Electrophysiol. 32, 680–682 (2009).

    Article  PubMed  Google Scholar 

  74. Yamauchi, Y. et al. Electrocardiographic characteristics of repetitive monomorphic right ventricular tachycardia originating near the His-bundle. J. Cardiovasc. Electrophyiol. 16, 1041–1048 (2005).

    Article  Google Scholar 

  75. Komatsu, Y. et al. Catheter ablation of ventricular arrhythmias arising from the right ventricular septum close to the His bundle: features of the local electrogram at the optimal ablation site. J. Cardiovasc. Electrophyiol. 22, 878–885 (2011).

    Article  Google Scholar 

  76. Tada, H. et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart Rhythm 4, 7–16 (2007).

    Article  PubMed  Google Scholar 

  77. Yamada, T., McElderry, H. T., Doppalapudi, H. & Kay, G. N. Catheter ablation of ventricular arrhythmias originating in the vicinity of the His bundle: significance of mapping the aortic sinus cusp. Heart Rhythm 5, 37–42 (2008).

    Article  PubMed  Google Scholar 

  78. Di Biase, L. et al. Safety and outcomes of cryoablation for ventricular tachyarrhythmias: results from a multicenter experience. Heart Rhythm 8, 968–974 (2011).

    Article  PubMed  Google Scholar 

  79. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121, 1533–1541 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ainsworth, C. D. et al. Differentiating arrhythmogenic right ventricular cardiomyopathy from right ventricular outflow tract ventricular tachycardia using multilead QRS duration and axis. Heart Rhythm 3, 416–423 (2006).

    Article  PubMed  Google Scholar 

  81. Hoffmayer, K. S. et al. Electrocardiographic comparison of ventricular arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy and right ventricular outflow tract tachycardia. J. Am. Coll. Cardiol. 58, 831–838 (2011).

    Article  PubMed  Google Scholar 

  82. Hoffmayer, K. S. et al. An electrocardiographic scoring system for distinguishing right ventricular outflow tract arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy from idiopathic ventricular tachycardia. Heart Rhythm 10, 477–482 (2013).

    Article  PubMed  Google Scholar 

  83. Boulos, M., Lashevsky, I. & Gepstein, L. Usefulness of electroanatomical mapping to differentiate between right ventricular outflow tract tachycardia and arrhythmogenic right ventricular dysplasia. Am. J. Cardiol. 95, 935–940 (2005).

    Article  PubMed  Google Scholar 

  84. Corrado, D. et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 111, 3042–3050 (2005).

    Article  PubMed  Google Scholar 

  85. Niroomand, F. et al. Electrophysiological characteristics and outcome in patients with idiopathic right ventricular arrhythmia compared with arrhythmogenic right ventricular dysplasia. Heart 87, 41–47 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. O'Donnell, D., Cox. D., Bourke, J., Mitchell, L. & Furniss, S. Clinical and electrophysiological differences between patients with arrhythmogenic right ventricular dysplasia and right ventricular outflow tract tachycardia. Eur. Heart J. 24, 801–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Kron, J. & Ellenbogen, K. A. Cardiac sarcoidosis: contemporary review. J. Cardiovasc. Electrophysiol. 26, 104–109 (2015).

    Article  PubMed  Google Scholar 

  88. Koplan, B. A., Soejima, K., Baughman, K., Epstein, L. M. & Stevenson, W. G. Refractory ventricular tachycardia secondary to cardiac sarcoid: electrophysiologic characteristics, mapping and ablation. Heart Rhythm 3, 924–929 (2006).

    Article  PubMed  Google Scholar 

  89. Crawford, T. et al. Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart Rhythm 7, 725–730 (2010).

    Article  PubMed  Google Scholar 

  90. Sadek, M. M. et al. Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm 12, 67–75 (2015).

    Article  PubMed  Google Scholar 

  91. Pieroni, M. et al. High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. J. Am. Coll. Cardiol. 53, 681–689 (2009).

    Article  PubMed  Google Scholar 

  92. Caforio, A. L. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).

    Article  PubMed  Google Scholar 

  93. Cheung, J. W. et al. Adenosine-insensitive right ventricular tachycardias: novel variant of idiopathic outflow tract tachycardia. Heart Rhythm 11, 1770–1778 (2014).

    Article  PubMed  Google Scholar 

  94. Yokoshiki, H., Mitsuyama, H., Ueno, M. & Tsutsui, H. Idiopathic reentrant right ventricular outflow tract tachycardia with presystolic potential of central pathway. J. Cardiovasc. Electrophysiol. 21, 1174–1177 (2010).

    Article  PubMed  Google Scholar 

  95. Lerman, B. B. Ventricular tachycardia: mechanistic insights derived from adenosine. Circ. Arrhythm. Electrophysiol. 8, 483–491 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce B. Lerman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerman, B. Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol 12, 597–608 (2015). https://doi.org/10.1038/nrcardio.2015.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing