Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes

A Corrigendum to this article was published on 28 November 2017

This article has been updated

Key Points

  • Activating alterations of the RET kinase are therapeutically actionable oncogenic drivers across a variety of cancers; in-frame RET rearrangements occur in subsets of non-small-cell lung and papillary thyroid cancers, and germ-line or somatic RET mutations are enriched in medullary thyroid cancers

  • Confirmed and durable responses to multikinase inhibitors with activity against RET can be achieved in a proportion of patients with RET-rearranged or RET-mutant cancers; however, objective response rates are modest

  • The outcomes observed with RET-directed therapy in RET-rearranged or RET-mutant cancers might be explained, in part, by the limitations of multikinase inhibitors, with inhibition of other kinases resulting in 'off-target' toxicities that preclude optimal dosing

  • Novel approaches to RET-directed targeted therapy are currently being explored; potent and specific RET inhibitors with minimal preclinical off-target activity are being evaluated in early stage clinical trials, as are combination therapies

  • Salient to the clinical development of potent RET inhibitors for patients of all ages, selective RET inactivation can affect the nervous, genitourinary, gastrointestinal, and haematopoietic systems during early development, but in adulthood, it leads to mild phenotypes

Abstract

The gene encoding the receptor-tyrosine kinase RET was first discovered more than three decades ago, and activating RET rearrangements and mutations have since been identified as actionable drivers of oncogenesis. Several multikinase inhibitors with activity against RET have been explored in the clinic, and confirmed responses to targeted therapy with these agents have been observed in patients with RET-rearranged lung cancers or RET-mutant thyroid cancers. Nevertheless, response rates to RET-directed therapy are modest compared with those achieved using targeted therapies matched to other oncogenic drivers of solid tumours, such as sensitizing EGFR or BRAFV600E mutations, or ALK or ROS1 rearrangements. To date, no RET-directed targeted therapeutic has received regulatory approval for the treatment of molecularly defined populations of patients with RET-mutant or RET-rearranged solid tumours. In this Review, we discuss how emerging data have informed the debate over whether the limited success of multikinase inhibitors with activity against RET can be attributed to the tractability of RET as a drug target or to the lack, until 2017, of highly specific inhibitors of this oncoprotein in the clinic. We emphasize that novel approaches to targeting RET-dependent tumours are necessary to improve the clinical efficacy of single-agent multikinase inhibition and, thus, hasten approvals of RET-directed targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of key developments in therapeutically targeting RET in the clinic.
Figure 2: Mechanisms of RET activation in cancer.
Figure 3: Consequences of inactivating RET mutations or Ret knockout.
Figure 4: Multikinase inhibitor activity against RET and other kinases.
Figure 5: Comparative efficacy of RET-directed targeted therapy in RET-rearranged lung cancers.

Similar content being viewed by others

Change history

  • 28 November 2017

    In the online and PDF versions of this Review, in the 'Acquired resistance' subsection, RETI788N was erroneously written as RETI887N, and the ROS1G2032R mutation was written as ROS1D2033N. This information has now been corrected in the online and PDF versions of the Review.

References

  1. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Mok, T. S. et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Planchard, D. et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 17, 984–993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Drilon, A. et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 17, 1653–1660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. H. et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann. Oncol. 28, 292–297 (2017).

    Article  PubMed  Google Scholar 

  11. Yoh, K. et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir. Med. 5, 42–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Velcheti, V. et al. Phase 2 study of lenvatinib (LN) in patients (Pts) with RET fusion-positive adenocarcinoma of the lung. Ann. Oncol. 27, 1204PD (2016).

    Article  Google Scholar 

  13. Han, J. Y. et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J. Clin. Oncol. 30, 1122–1128 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Y. L. et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann. Oncol. 26, 1883–1889 (2015).

    Article  PubMed  Google Scholar 

  15. Geater, S. L. et al. Symptom and quality of life improvement in LUX-Lung 6: an open-label phase III study of afatinib versus cisplatin/gemcitabine in Asian patients with EGFR mutation-positive advanced non-small-cell lung cancer. J. Thorac. Oncol. 10, 883–889 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Hida, T. et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390, 29–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Long, G. V. et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386, 444–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Subbiah, V. et al. Efficacy of vemurafenib in patients (pts) with non-small cell lung cancer (NSCLC) with BRAFV600 mutation [abstract]. J. Clin. Oncol. 35 (Suppl.), 9074 (2017).

    Article  Google Scholar 

  21. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Carlomagno, F. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002).

    CAS  PubMed  Google Scholar 

  23. Wedge, S. R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62, 4645–4655 (2002).

    CAS  PubMed  Google Scholar 

  24. Subbiah, V. et al. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B–RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer 89, 76–79 (2015).

    Article  PubMed  Google Scholar 

  25. Rahal, R. et al. The development of potent, selective RET inhibitors that target both wild-type RET and prospectively identified resistance mutations to multi-kinase inhibitors [abstract]. Cancer Res. 76 (Suppl.), 2641 (2016).

    Google Scholar 

  26. Brandhuber, B. J. et al. Identification and characterization of highly potent and selective RET kinase inhibitors for the treatment of RET-driven cancers [abstract]. Mol. Cancer Ther. 14 (Suppl. 2), B192 (2015).

    Google Scholar 

  27. Ishizaka, Y. et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 4, 1519–1521 (1989).

    CAS  PubMed  Google Scholar 

  28. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsuzuki, T. et al. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10, 191–198 (1995).

    CAS  PubMed  Google Scholar 

  30. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim. Biophys. Acta 1834, 2205–2212 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Vega, Q. C., Worby, C. A., Lechner, M. S., Dixon, J. E. & Dressler, G. R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA 93, 10657–10661 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kotzbauer, P. T. et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384, 467–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Milbrandt, J. et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20, 245–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Baloh, R. H. et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3–RET receptor complex. Neuron 21, 1291–1302 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Andreozzi, F. et al. Protein kinase Cα activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase. Oncogene 22, 2942–2949 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Fukuda, T., Kiuchi, K. & Takahashi, M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J. Biol. Chem. 277, 19114–19121 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Maeda, K. et al. Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Biochem. Biophys. Res. Commun. 323, 345–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Schuringa, J. J. et al. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene 20, 5350–5358 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Trupp, M., Scott, R., Whittemore, S. R. & Ibanez, C. F. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J. Biol. Chem. 274, 20885–20894 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Worby, C. A. et al. Glial cell line-derived neurotrophic factor signals through the RET receptor and activates mitogen-activated protein kinase. J. Biol. Chem. 271, 23619–23622 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Arighi, E., Borrello, M. G. & Sariola, H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 16, 441–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Romei, C., Ciampi, R. & Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 12, 192–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Kohno, T. et al. KIF5BRET fusions in lung adenocarcinoma. Nat. Med. 18, 375–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18, 378–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Lipson, D. et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18, 382–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Donis-Keller, H. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Mol. Genet. 2, 851–856 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Mulligan, L. M. RET revisited: expanding the oncogenic portfolio. Nat. Rev. Cancer 14, 173–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Borrello, M. G. et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cγ. Mol. Cell. Biol. 16, 2151–2163 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murakami, H. et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by Ret with the MEN 2B mutation. Biochem. Biophys. Res. Commun. 262, 68–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Melillo, R. M. et al. Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol. Cell. Biol. 21, 4177–4187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salvatore, D. et al. Increased in vivo phosphorylation of Ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res. 61, 1426–1431 (2001).

    CAS  PubMed  Google Scholar 

  56. Carlomagno, F. et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J. Clin. Endocrinol. Metab. 88, 1897–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Gilbert-Sirieix, M., Ripoche, H., Malvy, C. & Massaad-Massade, L. Effects of silencing RET/PTC1 junction oncogene in human papillary thyroid carcinoma cells. Thyroid 20, 1053–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Verbeek, H. H. et al. The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. J. Clin. Endocrinol. Metab. 96, E991–E995 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, M. et al. Identification of a lung adenocarcinoma cell line with CCDC6–RET fusion gene and the effect of RET inhibitors in vitro and in vivo. Cancer Sci. 104, 896–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Acton, D. S., Velthuyzen, D., Lips, C. J. & Hoppener, J. W. Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene 19, 3121–3125 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Michiels, F. M. et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc. Natl Acad. Sci. USA 94, 3330–3335 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saito, M. et al. A mouse model of KIF5B–RET fusion-dependent lung tumorigenesis. Carcinogenesis 35, 2452–2456 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Ji, J. H. et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 11, e1005467 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

  66. Wang, R. et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 30, 4352–4359 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Boulay, A. et al. The Ret receptor tyrosine kinase pathway functionally interacts with the ERα pathway in breast cancer. Cancer Res. 68, 3743–3751 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, C., Mayer, J. A., Mazumdar, A. & Brown, P. H. The rearranged during transfection/papillary thyroid carcinoma tyrosine kinase is an estrogen-dependent gene required for the growth of estrogen receptor positive breast cancer cells. Breast Cancer Res. Treat. 133, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Smith, J. et al. Germline ESR2 mutation predisposes to medullary thyroid carcinoma and causes up-regulation of RET expression. Hum. Mol. Genet. 25, 1836–1845 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Plaza-Menacho, I. et al. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 29, 4648–4657 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Spanheimer, P. M. et al. Inhibition of RET increases the efficacy of antiestrogen and is a novel treatment strategy for luminal breast cancer. Clin. Cancer Res. 20, 2115–2125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morandi, A. et al. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res. 73, 3783–3795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brea, E. J. et al. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol. Res. 4, 936–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takahashi, M., Ritz, J. & Cooper, G. M. Activation of a novel human transforming gene, Ret, by DNA rearrangement. Cell 42, 581–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  75. Viglietto, G. et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11, 1207–1210 (1995).

    CAS  PubMed  Google Scholar 

  76. Nikiforov, Y. E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 13, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  78. Hamatani, K. et al. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation. Oncol. Rep. 32, 1809–1814 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Velcheti, V. et al. FRMD4A/RET: a novel RET oncogenic fusion variant in non-small cell lung carcinoma. J. Thorac. Oncol. 12, e15–e16 (2017).

    Google Scholar 

  80. Lee, M. S. et al. Identification of a novel partner gene, KIAA1217, fused to RET: functional characterization and inhibitor sensitivity of two isoforms in lung adenocarcinoma. Oncotarget 7, 36101–36114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sabari, J. K., Siau, E. D. & Drilon, A. Targeting RET-rearranged lung cancers with multikinase inhibitors. Oncoscience 4, 23–24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Drilon, A. et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gautschi, O. et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J. Clin. Oncol. 35, 1403–1410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hatakeyama, S. TRIM proteins and cancer. Nat. Rev. Cancer 11, 792–804 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lira, M. E. et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J. Mol. Diagnost. 16, 229–243 (2014).

    Article  CAS  Google Scholar 

  86. Ciampi, R., Giordano, T. J., Wikenheiser-Brokamp, K., Koenig, R. J. & Nikiforov, Y. E. HOOK3RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr. Relat. Cancer 14, 445–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Corvi, R., Berger, N., Balczon, R. & Romeo, G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 19, 4236–4242 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Wiesner, T. et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 5, 3116 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Salassidis, K. et al. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res. 60, 2786–2789 (2000).

    CAS  PubMed  Google Scholar 

  90. Grubbs, E. G. et al. RET fusion as a novel driver of medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 100, 788–793 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Li, G. G. et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin. Cancer Res. 23, 2981–2990 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 16, 671–675 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Nakaoku, T. et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin. Cancer Res. 20, 3087–3093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ballerini, P. et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 26, 2384–2389 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kato, S. et al. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin. Cancer Res. 23, 1988–1997 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Mizukami, T. et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma. J. Thorac. Oncol. 9, 622–630 (2014).

    CAS  Google Scholar 

  98. Dacic, S. et al. RET rearrangements in lung adenocarcinoma and radiation. J. Thorac. Oncol. 9, 118–120 (2014).

    CAS  Google Scholar 

  99. Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shaw, A. T., Hsu, P. P., Awad, M. M. & Engelman, J. A. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer. 13, 772–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pao, W. & Hutchinson, K. E. Chipping away at the lung cancer genome. Nat. Med. 18, 349–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Monaco, C. et al. The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene 20, 599–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Santoro, M. & Carlomagno, F. Central role of RET in thyroid cancer. Cold Spring Harb. Perspect. Biol. 5, a009233 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Santoro, M. et al. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ. 4, 77–84 (1993).

    CAS  PubMed  Google Scholar 

  105. Wang, J. et al. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol. Endocrinol. 17, 1425–1436 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Santoro, M. et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12, 1821–1826 (1996).

    CAS  PubMed  Google Scholar 

  107. Melillo, R. M. et al. The RET/PTC–RAS–BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest. 115, 1068–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  109. Yoshihara, K. et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34, 4845–4854 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Tsuta, K. et al. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br. J. Cancer 110, 1571–1578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cai, W. et al. KIF5BRET fusions in Chinese patients with non-small cell lung cancer. Cancer 119, 1486–1494 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Drilon, A. et al. Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Ann. Oncol. 27, 1286–1291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leeman-Neill, R. J. et al. RET/PTC and PAX8/PPAR γ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 119, 1792–1799 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Ito, T. et al. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet 344, 259 (1994).

    CAS  PubMed  Google Scholar 

  115. Bossi, D. et al. Functional characterization of a novel FGFR1OP–RET rearrangement in hematopoietic malignancies. Mol. Oncol. 8, 221–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Mellert, H. et al. Early feasibility and development of multiplexed, single-reaction assays for ALK, ROS1 and RET novel ddPCR RNA fusions [abstract]. Cancer Res. 77 (Suppl.), 1784 (2017).

    Google Scholar 

  117. Zhu, Z., Ciampi, R., Nikiforova, M. N., Gandhi, M. & Nikiforov, Y. E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 91, 3603–3610 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Drilon, A. et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin. Cancer Res. 21, 3631–3639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zbuk, K. M. & Eng, C. Cancer phenomics: RET and PTEN as illustrative models. Nat. Rev. Cancer 7, 35–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagnost. 15, 251–264 (2015).

    Article  CAS  Google Scholar 

  121. Pacini, F. et al. Multiple endocrine neoplasia type 2A and cutaneous lichen amyloidosis: description of a new family. J. Endocrinol. Invest. 16, 295–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET Mutation Consortium analysis. JAMA 276, 1575–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267, 381–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Asai, N., Iwashita, T., Matsuyama, M. & Takahashi, M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol. Cell. Biol. 15, 1613–1619 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Asai, N. et al. Mechanism of Ret activation by a mutation at aspartic acid 631 identified in sporadic pheochromocytoma. Biochem. Biophys. Res. Commun. 255, 587–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Mulligan, L. M. et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 6, 70–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Jasim, S. et al. Multiple endocrine neoplasia type 2B with a RET proto-oncogene A883F mutation displays a more indolent form of medullary thyroid carcinoma compared with a RET M918T mutation. Thyroid 21, 189–192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gujral, T. S., Singh, V. K., Jia, Z. & Mulligan, L. M. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res. 66, 10741–10749 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Wells, S. A. Jr. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25, 567–610 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mathiesen, J. S. et al. Risk profile of the RET A883F germline mutation: an international collaborative study. J. Clin. Endocrinol. Metab. 102, 2069–2074 (2017).

    Article  PubMed  Google Scholar 

  131. Frank-Raue, K., Rondot, S. & Raue, F. Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC. Mol. Cell. Endocrinol. 322, 2–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Plaza Menacho, I. et al. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res. 65, 1729–1737 (2005).

    Article  PubMed  Google Scholar 

  133. Uchino, S. et al. Somatic mutations in RET exons 12 and 15 in sporadic medullary thyroid carcinomas: different spectrum of mutations in sporadic type from hereditary type. Jpn. J. Cancer Res. 90, 1231–1237 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Beldjord, C. et al. The RET protooncogene in sporadic pheochromocytomas: frequent MEN 2-like mutations and new molecular defects. J. Clin. Endocrinol. Metab. 80, 2063–2068 (1995).

    CAS  PubMed  Google Scholar 

  135. Tomuschat, C. & Puri, P. RET gene is a major risk factor for Hirschsprung's disease: a meta-analysis. Pediatr. Surg. Int. 31, 701–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Amiel, J. et al. Mutations of the RET-GDNF signaling pathway in Ondine's curse. Am. J. Hum. Genet. 62, 715–717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1429–1433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chatterjee, R. et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum. Genet. 131, 1725–1738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fitze, G. et al. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359, 1200–1205 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Carlomagno, F. et al. The different RET-activating capability of mutations of cysteine 620 or cysteine 634 correlates with the multiple endocrine neoplasia type 2 disease phenotype. Cancer Res. 57, 391–395 (1997).

    CAS  PubMed  Google Scholar 

  141. Ito, S. et al. Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirschsprung's disease phenotype. Cancer Res. 57, 2870–2872 (1997).

    CAS  PubMed  Google Scholar 

  142. Croaker, G. D., Shi, E., Simpson, E., Cartmill, T. & Cass, D. T. Congenital central hypoventilation syndrome and Hirschsprung's disease. Arch. Dis. Child. 78, 316–322 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Eppig, J. T. et al. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 43, D726–D736 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Burton, M. D. et al. RET proto-oncogene is important for the development of respiratory CO2 sensitivity. J. Auton. Nerv. Syst. 63, 137–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Aizenfisz, S. et al. Ventilatory responses to hypercapnia and hypoxia in heterozygous c-ret newborn mice. Respir. Physiol. Neurobiol. 131, 213–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Kramer, E. R. et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5, e39 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Patel, A. et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal. 5, ra55 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Patwardhan, P. P., Ivy, K. S., Musi, E., de Stanchina, E. & Schwartz, G. K. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget 7, 4093–4109 (2016).

    Article  PubMed  Google Scholar 

  153. Lin, C. et al. Apatinib inhibits cellular invasion and migration by fusion kinase KIF5B–RET via suppressing RET/Src signaling pathway. Oncotarget 7, 59236–59244 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lim, S. M. et al. An open label, multicenter, phase II study of dovitinib in advanced thyroid cancer. Eur. J. Cancer 51, 1588–1595 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Ferrari, S. M. et al. Pyrazolopyrimidine derivatives as antineoplastic agents: with a special focus on thyroid cancer. Mini Rev. Med. Chem. 16, 86–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Plenker, D. et al. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci. Transl Med. 9, eaah6144 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Roskoski, R. Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 103, 26–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Plaza-Menacho, I., Mologni, L. & McDonald, N. Q. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal. 26, 1743–1752 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Okamoto, K. et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 340, 97–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jain, N. & O'Brien, S. Ibrutinib (PCI-32765) in chronic lymphocytic leukemia. Hematol. Oncol. Clin. North Am. 27, 851–860 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mori, M. et al. ASP2215, a novel FLT3/AXL inhibitor: preclinical evaluation in acute myeloid leukemia (AML). J. Clin. Oncol. 32, 7070–7070 (2014).

    Article  Google Scholar 

  163. Krystal, G. W. et al. Indolinone tyrosine kinase inhibitors block Kit activation and growth of small cell lung cancer cells. Cancer Res. 61, 3660–3668 (2001).

    CAS  PubMed  Google Scholar 

  164. Mologni, L. et al. Inhibition of RET tyrosine kinase by SU5416. J. Mol. Endocrinol. 37, 199–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Kodama, T. et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol. Cancer Ther. 13, 2910–2918 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Mologni, L., Redaelli, S., Morandi, A., Plaza-Menacho, I. & Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell. Endocrinol. 377, 1–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Huang, Q. et al. Preclinical modeling of KIF5B–RET fusion lung adenocarcinoma. Mol. Cancer Ther. 15, 2521–2529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nelson-Taylor, S. K. et al. Resistance to RET-inhibition in RET-rearranged NSCLC is mediated by reactivation of RAS/MAPK signaling. Mol. Cancer Ther. 16, 1623–1633 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Matsubara, D. et al. Identification of CCDC6–RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J. Thorac. Oncol. 7, 1872–1876 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Bentzien, F. et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid 23, 1569–1577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vitagliano, D. et al. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocr. Relat. Cancer 18, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Carlomagno, F. et al. BAY 43-9006 inhibition of oncogenic RET mutants. J. Natl Cancer Inst. 98, 326–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Carlomagno, F. & Santoro, M. Identification of RET kinase inhibitors as potential new treatment for sporadic and inherited thyroid cancer. J. Chemother. 16 (Suppl. 4), 49–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Moccia, M. et al. Identification of novel small molecule inhibitors of oncogenic RET kinase. PloS ONE 10, e0128364 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Crockett, D. K. et al. Predicting phenotypic severity of uncertain gene variants in the RET proto-oncogene. PloS ONE 6, e18380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Sherman, S. I. et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer 122, 3856–3864 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Schlumberger, M. et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdx479 (2017).

  179. Schlumberger, M. et al. A Phase II Trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin. Cancer Res. 22, 44–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Lin, J. J. et al. Clinical activity of alectinib in advanced RET-rearranged non-small cell lung cancer. J. Thorac. Oncol. 11, 2027–2032 (2016).

    Article  PubMed  Google Scholar 

  181. Drilon, A. et al. Baseline frequency of brain metastases and outcomes with multikinase inhibitor therapy in patients with RET-rearranged lung cancers [abstract]. J. Clin. Oncol. 35 (Suppl.), 9069 (2017).

    Article  Google Scholar 

  182. Hayman, S. R., Leung, N., Grande, J. P. & Garovic, V. D. VEGF inhibition, hypertension, and renal toxicity. Curr. Oncol. Rep. 14, 285–294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Azad, N. S. et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin. Cancer Res. 15, 1411–1416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lacouture, M. E. et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Supportive Care Cancer 19, 1079–1095 (2011).

    Article  Google Scholar 

  185. Lacouture, M. E. et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist 18, 314–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tsao, A. S., Kantarjian, H., Cortes, J., O'Brien, S. & Talpaz, M. Imatinib mesylate causes hypopigmentation in the skin. Cancer 98, 2483–2487 (2003).

    Article  PubMed  Google Scholar 

  187. Hoffmann, P. & Warner, B. Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J. Pharmacol. Toxicol. Methods 53, 87–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Loriot, Y. et al. Drug insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat. Clin. Pract. Oncol. 5, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Schlumberger, M. J. et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J. Clin. Oncol. 27, 3794–3801 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Drilon, A. et al. A phase 1b study of RXDX-105, a VEGFR-sparing potent RET inhibitor, in RETi-naïve patients with RET fusion-positive NSCLC [abstract LBA19]. Ann. Oncol. 28 (Suppl. 5), mdx440.012 (2017).

    Google Scholar 

  191. Richardson, D. S., Gujral, T. S., Peng, S., Asa, S. L. & Mulligan, L. M. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res. 69, 4861–4869 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Drilon, A. et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6–NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol. 27, 920–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Croyle, M. et al. RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res. 68, 4183–4191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vaishnavi, A. et al. EGFR mediates responses to small-molecule drugs targeting oncogenic fusion kinases. Cancer Res. 77, 3551–3563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chang, H. et al. EGF induced RET inhibitor resistance in CCDC6–RET lung cancer cells. Yonsei Med. J. 58, 9–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Somwar, R. et al. MDM2 amplification (Amp) to mediate cabozantinib resistance in patients (Pts) with advanced RET-rearranged lung cancers [abstract]. J. Clin. Oncol. 34, (Suppl.), 9068 (2016).

    Article  Google Scholar 

  198. Gild, M. L. et al. Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pasini, B. et al. The physical map of the human RET proto-oncogene. Oncogene 11, 1737–1743 (1995).

    CAS  PubMed  Google Scholar 

  200. Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    Article  CAS  PubMed  Google Scholar 

  201. Knowles, P. P. et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem. 281, 33577–33587 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Herbst, R. S. et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 11, 619–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee, J. S. et al. Vandetanib versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J. Clin. Oncol. 30, 1114–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Ramalingam, S. S. et al. Osimertinib versus standard of care (SoC) EGFR-TKI as first-line therapy in patients (pts) with EGFRm advanced NSCLC: FLAURA. Ann. Oncol. 28 (Suppl. 5) v605–v649 (2017).

    Google Scholar 

  207. Soria, J. C. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389, 917–929 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Lim, S. M. et al. Ceritinib in ROS1-rearranged non-small-cell lung cancer: a Korean nationwide phase II study [abstract]. Ann. Oncol. 27 (Suppl. 6), 1205PD (2016).

    Google Scholar 

  210. Hanna, N. et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J. Clin. Oncol. 22, 1589–1597 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Fox, E. et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin. Cancer Res. 19, 4239–4248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lam, E. T. et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J. Clin. Oncol. 28, 2323–2330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Carr, L. L. et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res. 16, 5260–5268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ravaud, A. et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur. J. Cancer 76, 110–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Platt, A. et al. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized Phase III studies. BMC Cancer 15, 171 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Horiike, A. et al. Sorafenib treatment for patients with RET fusion-positive non-small cell lung cancer. Lung Cancer 93, 43–46 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.D. acknowledges funding support from the NIH (award T32-CA009207). D.S.W.T. acknowledges funding support from the National Medical Research Council (Singapore) Clinician-Scientist Award (NMRC/CSA/007/2016), as well as the Lung Cancer Translational and Clinical Research Flagship Program (NMRC/TCR/007-NCC/2013) The authors would also like to acknowledge Andrew Drilon, who helped design and create Figs 2, 3 and 5 of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussions of content, writing the manuscript, and editing and/or reviewing the manuscript before publication.

Corresponding author

Correspondence to Alexander Drilon.

Ethics declarations

Competing interests

A.D. has received honoraria from and has been an advisory board member for Ariad, AstraZeneca, Blueprint Medicines, Exelixis, Genentech/Roche, Ignyta, and Loxo Oncology; he has also received honoraria from Foundation Medicine. The other authors declare no competing interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Multikinase inhibitor activity against RET and other kinases. (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drilon, A., Hu, Z., Lai, G. et al. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 15, 151–167 (2018). https://doi.org/10.1038/nrclinonc.2017.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.175

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer