Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The basics of mass spectrometry in the twenty-first century

Key Points

  • Mass spectrometry has become an indispensable analytical tool in all types of drug discovery applications.

  • Development of two ionization techniques, electrospray (ESI) and matrix assisted laser desorption/ionization (MALDI), has revolutionized the applicability of mass spectrometry to almost any biological molecule.

  • Many types of mass analyzers can be used in drug discovery applications, but the majority of the work is done with quadrupoles, quadrupole ion traps, and time-of-flight mass spectrometers. Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometry is playing an increasingly important role as a mass analyzer.

  • Tandem mass spectrometry (MS/MS) is a crucial technique in many applications related to drug discovery. MS/MS involves multiple stages of mass analysis.

  • Quadrupole ion traps and FT-ICR mass spectrometers perform MS/MS by separating the stages in time. Other combinations of analyzers such as quadrupole/time-of-flight and multiple quadrupole mass spectrometers perform MS/MS using sequential analyzers.

Abstract

Enormous advances in our understanding of the chemistry underlying life processes have identified new targets for therapeutic agents. The discovery of effective therapeutics to address these targets is often accomplished through parallel synthetic and screening efforts. In almost all cases, what has enabled target identification and allowed parallel approaches to drug discovery to be effective are the development of either new analytical tools or the improvement of currently existing ones. Among these tools, mass spectrometry has evolved to become an irreplaceable technique in the analysis of biologically related molecules. This article will guide researchers in drug discovery through the basic principles of mass spectrometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic components of a typical mass spectrometer used in drug discovery.
Figure 2: A comparison of the mass spectra for cytochrome c generated using electrospray ionization and matrix-assisted laser desorption/ionization.
Figure 3: Pictorial diagrams of the common beam mass analysers viewed from above.
Figure 4: Pictorial diagrams of the common trapping mass analysers.
Figure 5: Schematic diagram of tandem mass spectrometry.

Similar content being viewed by others

References

  1. Lee, M. S. & Kerns, E. H. LC/MS applications in drug development. Mass Spectrom. Rev. 18, 187–279 (1999).

    Article  CAS  Google Scholar 

  2. Cheng, X. & Hochlowski, J. Current application of mass spectrometry to combinatorial chemistry. Anal. Chem. 74, 2679–2690 (2002).

    Article  CAS  Google Scholar 

  3. Triolo, A., Altamura, M., Cardinali, F., Sisto, A. & Maggi, C. A. Mass spectrometry and combinatorial chemistry: a short outline. J. Mass Spectrom. 36, 1249–1259 (2001).

    Article  CAS  Google Scholar 

  4. Shin, Y. G. & Breemen, R. B. v. Analysis and screening of combinatorial libraries using mass spectrometry. Biopharm. Drug Dispos. 22, 353–372 (2001).

    Article  CAS  Google Scholar 

  5. Kassel, D. B. Combinatorial chemistry and mass spectrometry in the 21st century drug discovery laboratory. Chem. Rev. 101, 255–267 (2001).

    Article  CAS  Google Scholar 

  6. Yamashita, M. & Fenn, J. B. Electrospray ion source. another variation of the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984). The initial publication in the development of electrospray as a useful ionization technique for mass spectrometry.

    Article  CAS  Google Scholar 

  7. Karas, M., Bachmann, D., Bahr, U. & Hillenkamp, F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Processes 78, 53–68 (1987). Seminal publication describing the use of a matrix to enhance the ionization efficiency of non-volatile compounds — this method of laser/desorption ionization is the most commonly used today.

    Article  CAS  Google Scholar 

  8. Horning, E. C., Horning, M. G., Carroll, D. I., Dzidic, I. & Stillwell, R. N. New Picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem. 45, 936–943 (1973).

    Article  CAS  Google Scholar 

  9. Chen, R. et al. Trapping, detection, and mass determination of coliphage T4 DNA Ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 67, 1159–1163 (1995).

    Article  CAS  Google Scholar 

  10. Smith, R. D., Cheng, X., Bruce, J. E., Hofstadler, S. A. & Anderson, G. A. Trapping, detection, and reaction of very large single molecular ions by mass spectrometry. Nature 369, 137–139 (1994).

    Article  CAS  Google Scholar 

  11. Smith, R. D., Bruce, J. E., Wu, Q. & Lei, Q. P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem. Soc. Rev. 26, 191–202 (1997). A good review of how mass spectrometry is used to study non-covalent complexes of proteins, DNA, DNA–drug interactions and enzyme–inhibitor interactions.

    Article  CAS  Google Scholar 

  12. Suizdak, G. et al. Mass spectrometry and viral analysis. Chem. Biol. 3, 45–48 (1996).

    Article  Google Scholar 

  13. Berggren, W. T., Westphall, M. S. & Smith, L. M. Single-pulse nanoelectrospray ionization. Anal. Chem. 74, 3443–3448 (2002).

    Article  CAS  Google Scholar 

  14. Lu, Y., Zhou, F., Shui, W., Bian, L., Guo, Y. & Yang, P. Pulsed Electrospray for mass spectrometry. Anal. Chem. 73, 4748–4753 (2001).

    Article  CAS  Google Scholar 

  15. Siegel, M. M., Tabei, K., Lambert, F., Candela, L. & Zoltan, B. Evaluation of a dual electrospray ionization/atmospheric pressure chemical ionization source at low flow rates (50μl/min) for analysis of both highly and weakly polar compounds. J. Am. Soc. Mass Spectrom. 9, 1196–1203 (1998).

    Article  CAS  Google Scholar 

  16. Tanaka, K. et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

    Article  CAS  Google Scholar 

  17. Laiko, V. V., Baldwin, M. A. & Burlingame, A. L. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 652–657 (2000).

    Article  CAS  Google Scholar 

  18. Laiko, V. V., Moyer, S. C. & Cotter, R. J. Atmospheric pressure MALDI/Ion trap mass spectrometry. Anal. Chem. 72, 5239–5243 (2000).

    Article  CAS  Google Scholar 

  19. Lay, J. O. MALDI–TOF Mass spectrometry of bacteria. Mass Spectrom. Rev. 20, 172–194 (2001).

    Article  CAS  Google Scholar 

  20. Fenselau, C. & Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 20, 157–171 (2001).

    Article  CAS  Google Scholar 

  21. Thomas, J. J., Shen, Z., Crowell, J. E., Finn, M. G. & Siuzdak, G. Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc. Natl Acad. Sci. USA 98, 4932–4937 (2001).

    Article  CAS  Google Scholar 

  22. Shen, Z. et al. Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 73, 612–619 (2001).

    Article  CAS  Google Scholar 

  23. Weickhardt, C., Moritz, F. & Grotemeyer, J. Time-of-flight mass spectrometry: state-of the-art in chemical analysis and molecular science. Mass Spectrom. Rev. 15, 139–162 (1996).

    Article  CAS  Google Scholar 

  24. Wiley, W. C. & McLaren, I. H. Time of flight mass spectrometer with improved resolution. Rev. Sci. Instr. 26, 1150–1157 (1955).

    Article  CAS  Google Scholar 

  25. Stafford, G. C. J., Kelley, P. E., Syka, J. E. P., Reynolds, W. E. & Todd, J. F. J. Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass Spectrom. Ion Processes 60, 85–98 (1984). A description of important improvements to the quadrupole ion trap mass spectrometer that eventually led to its wide use today.

    Article  CAS  Google Scholar 

  26. Schwartz, J. C., Syka, J. E. P. & Jardine, I. High resolution on a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2, 198–204 (1991).

    Article  CAS  Google Scholar 

  27. Goeringer, D. E., Whitten, W. B., Ramsey, J. M., McLuckey, S. A. & Glish, G. L. Theory of high-resolution mass spectrometry achieved via resonance ejection in the quadrupole ion trap. Anal. Chem. 64, 1434–1439 (1992).

    Article  CAS  Google Scholar 

  28. Kaiser, R. E. J., Louris, J. N., Amy, J. W. & Cooks, R. G. Extending the mass range of the quadrupole ion trap using axial modulation. Rapid Commun. Mass Spectrom. 3, 225–229 (1989).

    Article  CAS  Google Scholar 

  29. Marshall, A. G. & Comisarow, M. Fourier transform ion cyclotron resonance [FT–ICR] spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974). The first demonstration of the use of Fourier-transform ion-cyclotron resonance for mass analysis in ion-cyclotron resonance mass spectrometers.

    Article  Google Scholar 

  30. Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  Google Scholar 

  31. Busch, K. L., Glish, G. L. & McLuckey, S. A. Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry (VCH New York, 1988).

    Google Scholar 

  32. Carr, S. A., Huddleston, M. J. & Bean, M. E. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography–mass spectrometry. Protein Sci. 2, 183–196 (1993).

    Article  CAS  Google Scholar 

  33. Schlosser, A., Pipkorn, R., Bossemeyer, D. & Lehmann, W. D. Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal. Chem. 73, 170–176 (2001).

    Article  CAS  Google Scholar 

  34. McLuckey, S. A., Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614 (1992).

    Article  CAS  Google Scholar 

  35. Dongré, A. R., Somogyi, A. & Wysocki, V. H. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31, 339–350 (1996).

    Article  Google Scholar 

  36. Mabud, M. A., Dekrey, M. J. & Cooks, R. G. Surface-induced dissociation of molecular ions. Int. J. Mass Spectrom. Ion Processes 67, 285–294 (1985).

    Article  CAS  Google Scholar 

  37. Hunt, D. F., Shabanowitz, J. & Yates, J. R. Peptide sequence analysis by laser photodissociation Fourier transform mass spectrometry. J. Chem. Soc. Chem. Commun. 548–550 (1987).

  38. Tecklenburg, R. E., Miller, M. N. & Russell, D. H. Laser ion beam photodissociation studies of model amino acids and peptides. J. Am. Chem. Soc. 111, 1161–1171 (1989).

    Article  CAS  Google Scholar 

  39. Goolsby, B. J. & Brodbelt, J. S. Characterization of β-lactams by photodissociation and collision-activated dissociation in a quadrupole ion trap. J. Mass Spectrom. 33, 705–712 (1998).

    Article  CAS  Google Scholar 

  40. Payne, A. H. & Glish, G. L. Thermally assisted infrared multiphoton photodissociation in a quadrupole ion trap. Anal. Chem. 73, 3542–3548 (2001).

    Article  CAS  Google Scholar 

  41. Little, D. P., Speir, J. P., Senko, M. W., O'Connor, P. B. & McLafferty, F. W. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994).

    Article  CAS  Google Scholar 

  42. Glish, G. L. Multiple stage mass spectrometry: the next generation tandem mass spectrometry experiment. Analyst 119, 533–537 (1994).

    Article  CAS  Google Scholar 

  43. Kondrat, R. W. & Cooks, R. G. Direct analysis of mixtures by mass spectrometry. Anal. Chem. 50, 81A–92A (1978).

    Article  CAS  Google Scholar 

  44. Yost, R. A. & Enke, C. G. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 100, 2274–2275 (1978). The first demonstration of a triple quadrupole mass spectrometer and its advantages for structural analysis by tandem mass spectrometry.

    Article  CAS  Google Scholar 

  45. Glish, G. L. & Goeringer, D. E. Tandem quadrupole/time-of-flight instrument for mass spectrometry/mass spectrometry. Anal. Chem. 56, 2291–2295 (1984). The first tandem quadrupole/time of flight mass spectrometer, developed for high-speed and high-sensitivity MS/MS.

    Article  CAS  Google Scholar 

  46. Wan, K. X., Gross, M. L. & Shibue, T. Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap. J. Am. Soc. Mass Spectrom. 11, 450–457 (2000).

    Article  CAS  Google Scholar 

  47. Gale, D. C., Goodlett, D. R., Light-Wahl, K. J. & Smith, R. D. Observation of duplex DNA–drug noncovalent complexes by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 116, 6027–6028 (1994).

    Article  CAS  Google Scholar 

  48. Kapur, A., Beck, J. L. & Sheil, M. M. Observation of daunomycin and nogalamycin complexes with duplex DNA using electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 13, 2489–2497 (1999).

    Article  CAS  Google Scholar 

  49. Gabelica, V. DePauw, E. & Rosu, F. Interaction between antitumor drugs and a double-stranded oligonucleotide studied by electrospray ionization mass spectrometry. J. Mass Spectrom. 34, 1328–1337 (1999).

    Article  CAS  Google Scholar 

  50. Gupta, R., Kapur, A., Beck, J. L. & Sheil, M. M. Positive ion electrospray ionization mass spectrometry of double-stranded DNA/drug complexes. Rapid Commun. Mass Spectrom. 15, 2472–2480 (2001).

    Article  CAS  Google Scholar 

  51. David, W. M., Brodbelt, J., Kerwin, S. M. & Thomas, P. W. Investigation of quadruplex oligonucleotide–drug interactions by electrospray ionization mass spectrometry. Anal. Chem. 74, 2029–2033 (2002).

    Article  CAS  Google Scholar 

  52. Rosu, F., Gabelica, V., Houssier, C. & DePauw, E. Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res. 30, e82 (2002).

    Article  Google Scholar 

  53. Hofstadler, S. A. et al. Multiplexed screening of neutral mass-tagged RNA targets against ligand libraries with electrospray ionization FTICR MS: a paradigm for high-throughput affinity screening. Anal. Chem. 71, 3436–3440 (1999).

    Article  CAS  Google Scholar 

  54. Masselon, C., Anderson, G. A., Harkewicz, R., Bruce, J. E., Pasa-Tolic, L. & Smith, R. D. Accurate mass multiplexed tandem mass spectrometry for high-throughput polypeptide identification from mixtures. Anal. Chem. 72, 1918–1924 (2000).

    Article  CAS  Google Scholar 

  55. Wabnitz, P. A. & Loo, J. A. Drug screening of pharmaceutical discovery compounds by micro-size exclusion chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 16, 85–91 (2002).

    Article  CAS  Google Scholar 

  56. Moy, F. J. et al. MS/NMR: A structure-based approach for discovering protein ligands and for drug design by coupling size exclusion chromatography. Mass spectrometry, and nuclear magnetic resonance spectroscopy. Anal. Chem. 73, 571–581 (2001).

    Article  CAS  Google Scholar 

  57. Siegel, M. M., Tabei, K., Bebernitz, G. A. & Baum, E. Z. Rapid methods for screening low molecular mass compounds non-covalently bound to proteins using size exclusion and mass spectrometry applied to inhibitors of human cytomegalovirus protease. J. Mass Spectrom. 33, 264–273 (1998).

    Article  CAS  Google Scholar 

  58. Kaltashov, I. A. & Eyles, S. J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev. 21, 37–71 (2002).

    Article  CAS  Google Scholar 

  59. Smith, D. L., Deng, Y. & Zhang, Z. Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J. Mass Spectrom. 32, 135–146 (1997).

    Article  CAS  Google Scholar 

  60. Engen, J. R. & Smith, D. L. Investigating protein structure and dynamics by hydrogen exchange MS. Anal. Chem. 73, 256A–265A (2001). A good review of the use of mass spectrometry with hydrogen exchange to probe structure and dynamics.

    Article  CAS  Google Scholar 

  61. Deng, Y., Pan, H. & Smith, D. L. Selective isotope labeling demonstrates that hydrogen exchange at individual peptide amide linkages can be determined by collision-induced dissociation mass spectrometry. J. Am. Chem. Soc. 121, 1966–1967 (1999).

    Article  CAS  Google Scholar 

  62. Eyles, S. J., Speir, J. P., Kruppa, G. H., Gierasch, L. M. & Kaltashov, I. A. Protein conformational stability probed by Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Chem. Soc. 122, 495–500 (2000).

    Article  CAS  Google Scholar 

  63. Kaltashov, I. A. & Eyles, S. J. Crossing the phase boundary to study protein dynamics and function: combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. J. Mass Spectrom. 37, 557–565 (2002).

    Article  CAS  Google Scholar 

  64. Aebersold, R. & Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Glish.

Related links

Related links

FURTHER INFORMATION

International Mass Spectrometry Society

American Society for Mass Spectrometry

Enclyclopedia of Life Sciences

Mass spectrometry in biology

Glossary

ANALYTE

The substance being analyzed.

PROTONATION

The addition of one or more protons to a compound so that the net charge of the compound is positive.

DEPROTONATION

The removal of one or more protons from a compound so that the net charge of the compound is negative.

KINETIC ENERGY

The energy associated with a substance because of its translational motion; equal to one-half its mass times the square of its velocity.

INTERNAL ENERGY

The energy associated with the movement of the atoms and electrons in a chemical compound relative to one another; the increase in the internal energy of a compound leads to an increase in its temperature and in some cases dissociation.

STOICHIOMETRY

The quantitative relationship between the reactants and products in a chemical reaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glish, G., Vachet, R. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2, 140–150 (2003). https://doi.org/10.1038/nrd1011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing