Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transient receptor potential channels as therapeutic targets

Key Points

  • The role of transient receptor potential (TRP) channels is best understood in the pain area. As TRP channels are expressed on peripheral nociceptors, where pain is generated, it is hoped that TRP channel blockers will be devoid of the side effects that limit the use of analgesic agents that act on the central nervous system.

  • Several TRP cation channel subfamily V, member 1 (TRPV1) antagonists have advanced to clinical trials, but their side effects (which include hyperthermia and impaired noxious heat detection) have prevented any compounds from progressing beyond Phase II clinical trials.

  • TRPV3 antagonists have shown efficacy in models of neuropathic and inflammatory pain, and one antagonist has entered Phase I clinical trials.

  • An autosomal dominant mutation in the gene that encodes TRP cation channel subfamily A, member 1 (TRPA1) causes familial episodic pain syndrome. Indeed, TRPA1 antagonists have been shown to reduce cold hypersensitivity in rodent models of neuropathic pain without altering normal cold sensation in naive animals.

  • Several TRP channels (such as TRPV1, TRPV4 and TRP cation channel subfamily M, member 8 (TRPM8)) are expressed in the urinary bladder, where they presumably function as sensors of stretch and chemical irritation. TRPV1 and TRPV4 antagonists improve bladder function in rodent models of cystitis.

  • Populations of non-neuronal cells within the skin express many different types of TRP channels that are implicated in the regulation of several key cutaneous functions including skin-derived pruritus, proliferation, differentiation and inflammatory processes.

  • TRPA1 and TRPV1 serve as polymodal sensors in the mammalian respiratory tract that integrate varied inflammatory, oxidant and hazardous irritant stimuli to produce noxious sensations (for example, breathlessness, the urge to cough and nasopharyngeal pain) and respiratory reflexes such as coughing.

  • Several TRP channels — including members of TRP cation channel subfamily C (TRPC) and TRPV — influence the process of gas exchange by regulating airflow, blood flow and airway permeability.

  • Mutations in at least six of the 28 members of the TRP channel superfamily are associated with heritable genetic diseases in humans. These mutations have implicated TRP channels in many pathophysiological states and expanded our understanding of the physiological role of these channels.

  • The role of TRP channels in the brain remains to be elucidated, but it seems to be clear that some members of the superfamily are involved in neuronal excitability and neurotransmitter release. Genetic deletion of TRPC5 leads to an anxiolytic phenotype, whereas a point mutation in TRPC3 leads to ataxia.

  • TRP channels also serve important functions in other diseases that are not fully explored in this Review. For example, cancer and metabolic diseases will be particularly interesting to watch in the future.

Abstract

Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system. This Review focuses on recent developments in the TRP channel-related field, and highlights potential opportunities for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity in structure among TRP channel families.
Figure 2: TRP channels as nociceptors.
Figure 3: Roles of TRP channels in bladder functions.
Figure 4: TRP channels in human skin.
Figure 5: Diverse roles of TRP channels in the pathophysiology of the mammalian respiratory tract.

Similar content being viewed by others

References

  1. Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nature Rev. Drug Discov. 8, 55–68 (2009).

    Article  CAS  Google Scholar 

  2. Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1, 10 years from channel cloning to antagonist proof-of-concept. Nature Rev. Drug Discov. 6, 357–372 (2007).

    Article  CAS  Google Scholar 

  3. Wu, L. J., Sweet, T. B. & Clapham, D. E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62, 381–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilius, B. & Owsianik, G. Transient receptor potential channelopathies. Pflugers Arch. 460, 437–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159–212 (1999).

    CAS  PubMed  Google Scholar 

  6. Fanger, C. M., del Camino, D. & Moran, M. M. TRPA1 as an analgesic target. Open Drug Discov. J. 2, 63–69 (2010).

    Article  CAS  Google Scholar 

  7. McKemy, D. D. Therapeutic potential of TRPM8 modulators. Open Drug Discov. J. 2, 80–87 (2010).

    Article  CAS  Google Scholar 

  8. Everaerts, W., Nilius, B. & Owsianik, G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog. Biophys. Mol. Biol. 103, 2–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Gavva, N. R. et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Iida, T., Shimizu, I., Nealen, M. L., Campbell, A. & Caterina, M. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett. 378, 28–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Toth, D. M. et al. Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice. Cell. Mol. Life Sci. 11 Nov 2010 (doi:10.1007/s00018-010-0569-2).

  13. Garami, A. et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J. Neurosci. 31, 1721–1733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Romanovsky, A. A. et al. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev. 61, 228–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavva, N. R. et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J. Pharmacol. Exp. Ther. 323, 128–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Rowbotham, M. C. et al. Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 152, 1192–1200 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Krarup, A. L. et al. Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain. Aliment. Pharmacol. Ther. 33, 1113–1122 (2011). This was the first report of a TRPV1 antagonist that had clinical efficacy in a painful disease state without causing significant adverse effects.

    Article  CAS  PubMed  Google Scholar 

  18. Lehto, S. G. et al. Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2, 3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(tri fluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther. 326, 218–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chizh, B. A. et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132, 132–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Knotkova, H., Pappagallo, M. & Szallasi, A. Capsaicin (TRPV1 agonist) therapy for pain relief: farewell or revival? Clin. J. Pain 24, 142–154 (2008).

    Article  PubMed  Google Scholar 

  21. Noto, C., Pappagallo, M. & Szallasi, A. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr. Opin. Investig. Drugs 10, 702–710 (2009).

    CAS  PubMed  Google Scholar 

  22. Li, H., Wang, S., Chuang, A. Y., Cohen, B. E. & Chuang, H. H. Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog. Proc. Natl Acad. Sci. USA 108, 8497–8502 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bessac, B. F. et al. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest. 118, 1899–1910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satoh, J. & Yamakage, M. Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers. J. Anesth. 23, 620–623 (2009).

    Article  PubMed  Google Scholar 

  27. Bessac, B. F. et al. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J. 23, 1102–1114 (2009). This was the first demonstration that activation of TRPA1 is both necessary and sufficient to cause nocifensive reflexes in response to inhalation of a broadly reactive respiratory irritant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taylor-Clark, T. E., Kiros, F., Carr, M. J. & McAlexander, M. A. Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am. J. Respir. Cell Mol. Biol. 40, 756–762 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Taylor-Clark, T. E. & Undem, B. J. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J. Physiol. 588, 423–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Cruz-Orengo, L. et al. Cutaneous nociception evoked by 15-δ PGJ2 via activation of ion channel TRPA1. Mol. Pain 4, 30 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trevisani, M. et al. 4-hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA 104, 13519–13524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. McNamara, C. R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl Acad. Sci. USA 104, 13525–13530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eid, S. R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, H., Hamalainen, M. M., Saarnilehto, M., Koivisto, A. & Pertovaara, A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111, 147–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Katsura, H. et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol. 200, 112–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. del Camino, D. et al. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 30, 15165–15174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. da Costa, D. S. et al. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148, 431–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J. et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152, 1165–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain 6, 14 (2010). This was the first demonstration that a TRPA1 antagonist is capable of relieving pathological pain in animal models without altering cold sensation in naive animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerstein, P. C., del Camino, D., Moran, M. M. & Stucky, C. L. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain 5, 19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010). This paper was the first to link the activity of a TRP channel to a pain syndrome in humans. It also suggested that potentiation of TRPA1 by cold temperatures is physiologically relevant, as cold is one of the triggers for pain episodes in patients suffering from pain syndromes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, X. et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141, 331–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gopinath, P. et al. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womens Health 5, 2 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007). This was the first report of disease-related changes in the expression of TRPV1, TRPV3 and TRPV4 in painful disease states in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, R. et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 283, 6162–6174 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Khairatkar Joshi, N., Maharaj, N. & Thomas, A. The TRPV3 receptor as a pain target: a therapeutic promise or just some more new biology? Open Drug Discov. J. 2, 88–95 (2010).

    Google Scholar 

  50. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Okazawa, M. et al. Noxious heat receptors present in cold-sensory cells in rats. Neurosci. Lett. 359, 33–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Parks, D. J. et al. Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J. Med. Chem. 54, 233–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Andersson, K. E., Gratzke, C. & Hedlund, P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int. 106, 1114–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Avelino, A. & Cruz, F. TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch. Pharmacol. 373, 287–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Everaerts, W. et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am. J. Physiol. Renal Physiol. 298, F692–F701 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. MacDonald, R., Monga, M., Fink, H. A. & Wilt, T. J. Neurotoxin treatments for urinary incontinence in subjects with spinal cord injury or multiple sclerosis: a systematic review of effectiveness and adverse effects. J. Spinal Cord Med. 31, 157–165 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cruz, C. D. et al. Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp. Neurol. 214, 301–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Cruz, F. & Dinis, P. Resiniferatoxin and botulinum toxin type A for treatment of lower urinary tract symptoms. Neurourol. Urodyn. 26, 920–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Sculptoreanu, A., de Groat, W. C., Buffington, C. A. & Birder, L. A. Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci. Lett. 381, 42–46 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Charrua, A. et al. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol. 181, 379–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA 107, 19084–19089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mochizuki, T. et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284, 21257–21264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thorneloe, K. S. et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl} -3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J. Pharmacol. Exp. Ther. 326, 432–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Mukerji, G. et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 6, 6 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lashinger, E. S. et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Renal Physiol. 295, F803–F810 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Paus, R., Schmelz, M., Biro, T. & Steinhoff, M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J. Clin. Invest. 116, 1174–1186 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Biro, T. et al. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim. Biophys. Acta 1772, 1004–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Bodo, E. et al. Vanilloid receptor-1 (VR1) is widely expressed on various epithelial and mesenchymal cell types of human skin. J. Invest. Dermatol. 123, 410–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Stander, S. et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp. Dermatol. 13, 129–139 (2004).

    Article  PubMed  Google Scholar 

  76. Shim, W. S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weisshaar, E., Heyer, G., Forster, C. & Handwerker, H. O. Effect of topical capsaicin on the cutaneous reactions and itching to histamine in atopic eczema compared to healthy skin. Arch. Dermatol. Res. 290, 306–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Alenmyr, L., Hogestatt, E. D., Zygmunt, P. M. & Greiff, L. TRPV1-mediated itch in seasonal allergic rhinitis. Allergy 64, 807–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nature Neurosci. 14, 595–602 (2011). This study showed that TRPA1 not only mediates pain and airway irritation but is also required for histamine-independent itch.

    Article  CAS  PubMed  Google Scholar 

  80. Carrillo, P. et al. Cutaneous wounds produced by capsaicin treatment of newborn rats are due to trophic disturbances. Neurotoxicol. Teratol. 20, 75–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Lagerstrom, M. C. et al. VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68, 529–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Y. et al. VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68, 543–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bodo, E. et al. A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am. J. Pathol. 166, 985–998 (2005). This study was the first to show that TRPV1 expressed on non-neuronal skin cells is involved in the regulation of cell growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Toth, B. I. et al. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential Vanilloid-1. J. Invest. Dermatol. 131, 1095–1104 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Denda, M., Sokabe, T., Fukumi-Tominaga, T. & Tominaga, M. Effects of skin surface temperature on epidermal permeability barrier homeostasis. J. Invest. Dermatol. 127, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, Y. M., Kim, Y. K. & Chung, J. H. Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp. Dermatol. 18, 431–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, Y. M. et al. A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J. Cell Physiol. 219, 766–775 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol. 126, 2664–2672 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Yoshioka, T. et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J. Invest. Dermatol. 129, 714–722 (2009). These experiments demonstrated that a gain-of-function mutation in the Trpv3 gene results in severe dermatitis in mice; the TRPV3 protein is abundant in keratinocytes.

    Article  CAS  PubMed  Google Scholar 

  91. Borbiro, I., Geczy, T., Paus, R., Kovacs, L. & Biro, T. Activation of transient receptor potential vanilloid-3 (TRPV3) inhibits human hair growth. J. Invest. Dermatol. 128, S151 (2008).

    Article  CAS  Google Scholar 

  92. Mazzone, S. B. & Undem, B. J. Cough sensors. V. Pharmacological modulation of cough sensors. Handb. Exp. Pharmacol. 187, 99–127 (2009).

    Article  CAS  Google Scholar 

  93. Carr, M. J. & Lee, L. Y. Plasticity of peripheral mechanisms of cough. Respir. Physiol. Neurobiol. 152, 298–311 (2006).

    Article  PubMed  Google Scholar 

  94. Fujimura, M. et al. Prostanoids and cough response to capsaicin in asthma and chronic bronchitis. Eur. Respir. J. 8, 1499–1505 (1995).

    CAS  PubMed  Google Scholar 

  95. Blom, H. M. et al. Intranasal capsaicin is efficacious in non-allergic, non-infectious perennial rhinitis. A placebo-controlled study. Clin. Exp. Allergy 27, 796–801 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Matta, J. A. et al. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl Acad. Sci. USA 105, 8784–8789 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Andrè, E. et al. Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest. 118, 2574–2582 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Birrell, M. A. et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med. 180, 1042–1047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Talavera, K. et al. Nicotine activates the chemosensory cation channel TRPA1. Nature Neurosci. 12, 1293–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Caceres, A. I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl Acad. Sci. USA 106, 9099–9104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nassini, R. et al. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904–4916 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Weissmann, N. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl Acad. Sci. USA 103, 19093–19098 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, Y. et al. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119, 2313–2322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. White, T. A. et al. Role of transient receptor potential C3 in TNF-α-enhanced calcium influx in human airway myocytes. Am. J. Respir. Cell. Mol. Biol. 35, 243–251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiao, J. H., Zheng, Y. M., Liao, B. & Wang, Y. X. Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 43, 17–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Sel, S. et al. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin. Exp. Allergy 38, 1548–1558 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Jia, Y. et al. Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L272–L278 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Zhu, G. et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet. 18, 2053–2062 (2009). This was the first study to suggest that TRPV4 can regulate lung function in humans.

    Article  CAS  PubMed  Google Scholar 

  109. Li, J. et al. TRPV4-mediated calcium-influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ. Health Perspect. 119, 784–793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jian, M. Y., King, J. A., Al-Mehdi, A. B., Liedtke, W. & Townsley, M. I. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am. J. Respir. Cell Mol. Biol. 38, 386–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Hamanaka, K. et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L923–L932 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Willette, R. N. et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J. Pharmacol. Exp. Ther. 326, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Hamanaka, K. et al. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L353–L362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mizoguchi, F. et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J. Cell Physiol. 216, 47–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell. Metab. 8, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Dai, J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J. Med. Genet. 47, 704–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Rock, M. J. et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nature Genet. 40, 999–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Krakow, D. et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am. J. Hum. Genet. 84, 307–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Auer-Grumbach, M. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nature Genet. 42, 160–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Landoure, G. et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nature Genet. 42, 170–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Feng, S. et al. Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J. Biol. Chem. 283, 28471–28479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, Y. et al. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 21, 1657–1666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chubanov, V. et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem. 282, 7656–7667 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genet. 31, 166–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Schlingmann, K. P. et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J. Am. Soc. Nephrol. 16, 3061–3069 (2005).

    Article  PubMed  Google Scholar 

  131. Dong, X. P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Szallasi, A. & Di Marzo, V. New perspectives on enigmatic vanilloid receptors. Trends Neurosci. 23, 491–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Cavanaugh, D. et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle. J. Neurosci. 31, 5067–5077 (2011). This careful study highlighted the challenges of determining the expression pattern for a target of interest, and the need to combine multiple approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 27, 832–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mezey, E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl Acad. Sci. USA 97, 3655–3660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kauer, J. A. & Gibson, H. E. Hot flash: TRPV channels in the brain. Trends Neurosci. 32, 215–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Grueter, B. A., Brasnjo, G. & Malenka, R. C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nature Neurosci. 13, 1519–1525 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Jia, Y., Zhou, J., Tai, Y. & Wang, Y. TRPC channels promote cerebellar granule neuron survival. Nature Neurosci. 10, 559–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Hartmann, J. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Becker, E. B. et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc. Natl Acad. Sci. USA 106, 6706–6711 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Riccio, A. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137, 761–772 (2009). This study was the first to implicate TRPC5 in anxiety. The neuronal recordings obtained in the study suggest that there is a potential link between TRPC5 and the CCK4 pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neurosci. 6, 837–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Miller, B. A. & Zhang, W. TRP channels as mediators of oxidative stress. Adv. Exp. Med. Biol. 704, 531–544 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Xu, C. et al. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord. 11, 1–10 (2009).

    Article  PubMed  Google Scholar 

  145. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Lehen'kyi, V. & Prevarskaya, N. Oncogenic TRP channels. Adv. Exp. Med. Biol. 704, 929–945 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  148. Thebault, S. et al. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J. Biol. Chem. 280, 39423–39435 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Reading, S. A. & Brayden, J. E. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke 38, 2322–2328 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, H. et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ. Cardiovasc. Genet. 3, 374–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest. 120, 3267–3279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Onohara, N. et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 5305–5316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brixel, L. R. et al. TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch. 460, 69–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Colsoul, B. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc. Natl Acad. Sci. USA 107, 5208–5213 (2010). This study identified TRPM5 as a potential target for antidiabetic drugs.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Suri, A. & Szallasi, A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci. 29, 29–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Motter, A. L. & Ahern, G. P. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257–2262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Biro, T. et al. Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice. J. Invest. Dermatol. 126, 1909–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Toth, B. I. et al. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J. Invest. Dermatol. 129, 329–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Beck, B. et al. TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium 43, 492–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Pani, B. et al. Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier's disease. Mol. Biol. Cell 17, 4446–4458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Atoyan, R., Shander, D. & Botchkareva, N. V. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J. Invest. Dermatol. 129, 2312–2315 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Lehen'kyi, V. et al. TRPV6 is a Ca2+ entry channel essential for Ca2+-induced differentiation of human keratinocytes. J. Biol. Chem. 282, 22582–22591 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. McNeill, M. S. et al. Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J. Invest. Dermatol. 127, 2020–2030 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Kiyonaka, S. et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl Acad. Sci. USA 106, 5400–5405 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lambert, S. et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 286, 12221–12233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bellone, R. R. et al. Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 179, 1861–1870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Audo, I. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 720–729 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, Z. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am. J. Hum. Genet. 85, 711–719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. van Genderen, M. M. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 730–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Uchida, K. et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60, 119–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Harteneck, C., Frenzel, H. & Kraft, R. N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc. Drug Rev. 25, 61–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Walder, R. Y. et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18, 4367–4375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hermosura, M. C. et al. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc. Natl Acad. Sci. USA 102, 11510–11515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen, H. C. et al. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS ONE 5, e11161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Higashi, Y., Kiuchi, T. & Furuta, K. Efficacy and safety profile of a topical methyl salicylate and menthol patch in adult patients with mild to moderate muscle strain: a randomized, double-blind, parallel-group, placebo-controlled, multicenter study. Clin. Ther. 32, 34–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Garcia-Gonzalez, M. A. et al. Pkd1 and Pkd2 are required for normal placental development. PLoS ONE 5, e12821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Scholz, J. & Clifford, J. W. Can we conquer pain? Nature Neurosci. 5, 1062–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Nilius for reading the manuscript and providing useful comments, and M. Trevisani for his help in compiling the TRPV1 antagonist clinical trials database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Szallasi.

Ethics declarations

Competing interests

Magdalene M. Moran works at Hydra Biosciences and has stock options in the company. Hydra Biosciences focuses on TRP channels and has programmes on some of the TRP channels that are discussed in the Review.

Michael Allen McAlexander is a full-time employee at GlaxoSmithKline.

Arpad Szallasi is a paid consultant to two small biotechnology companies with active TRP channel drug discovery programmes.

Tamás Bíró declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Clinical trials with TRPV1 antagonists (PDF 279 kb)

Supplementary information S2 (table)

(PDF 420 kb)

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

Daewoong Pharmaceutical website

Drugs.com website

Drugs.com website

Glenmark Pharmaceuticals website

Japan Tobacco — Clinical Development of Pharmaceuticals (29 July 2010)

PharmEste website

Sanofi website

Glossary

Pruritus

Pruritus (also called an itch) is an unpleasant cutaneous sensation that is associated with an urge to scratch. Various categories of pruritus have been suggested, including pruriceptive itch (which arises from skin conditions), neurogenic itch (which is caused by systemic disorders), neuropathic itch (which is due to a primary neurological disorder) and psychogenic itch.

Prurigo nodularis

A skin condition that is characterized by itchy nodules (circumscribed, solid elevations on the skin), which usually appear on the arms or legs.

Pruritogens

Agents that induce itch by stimulating pruritoceptive sensory afferent neurons. In the skin, they are synthesized by and released from multiple non-neuronal cell types and include histamine, acids, ATP, prostaglandins and pro-inflammatory interleukins.

Alopecia

A type of pathological hair loss that mostly affects the scalp. The most common forms of alopecia are alopecia universalis, alopecia areata and alopecia androgenetica. Telogen Effluvium, which is characterized by diffuse hair shedding, is a form of alopecia.

Hirsutism

Excessive and increased hair growth (especially in women) on regions of the body where the occurrence of hair normally is minimal or absent.

Dermatitis

A universal term describing inflammation of the skin. It can be induced by various factors such as allergens (allergic dermatitis), infections, eczema (atopic dermatitis) or external compounds (contact dermatitis).

Apnoea

Prolonged periods of time without respiratory flow. Although humans can perform this manoeuvre voluntarily (by holding their breath), reflex apnoeas can be induced in human volunteers and animals by irritant stimulation of the respiratory tract.

Hair cycle

A life-long regeneration programme of the hair follicles that can be divided into three phases: anagen (growth), catagen (apoptosis-driven regression or involution) and telogen (resting or quiescence, preparation for the next anagen phase). This cycle is controlled by promoters (for example, insulin-like growth factor 1 and hepatocyte growth factor) and inhibitors (for example, interleukin-1β, and transforming growth factor-β2)

Respiratory irritation

A stereotypical reflex reduction in respiratory rate exhibited by small laboratory animals following irritant aerosol provocation. This behaviour generally predicts the irritation threshold for molecules in humans.

Pilosebaceous unit

Consists of the hair shaft, the hair follicle, the sebaceous gland and the erector pili muscle; causes the hair to stand up when it contracts.

Sebum

A lipid-enriched, oily exocrine product of the sebaceous glands that has various functions including waterproof barrier formation, antimicrobial activity, transport and thermoregulation.

Basal cell carcinoma

The most common type of malignant skin tumour, which develops from the basal cell layer of the epidermis. It rarely metastasizes, but without treatment it may cause substantial destruction by invading the deeper skin tissues.

Darier's disease

A congenital skin condition that is characterized by dyskeratosis (abnormal keratinization of the epidermis) and the appearance of pruritic, greasy and scaly skin papules (circumscribed, solid elevations on the skin) and plaques (confluences of papules).

Vitiligo

A skin disorder that is characterized by depigmentation of patches of skin. It develops as a result of impaired functions or death of skin melanocytes, which can be induced by various factors, such as autoimmune conditions, genetic factors, oxidative stress and infections.

Penh (enhanced pause)

A derived value that is supposed to characterize the ventilatory activity of freely moving rodents in plethysmography chambers where airflow is measured. Interpretation of this measurement is debated within the respiratory field.

Bronchoalveolar lavage

A procedure in which inflammatory cells and other materials within the airway lumen are collected via repeated washings.

Alveoli

Distal regions of the lung in which a thin barrier between airspaces and capillaries allows for gas exchange.

Filtration coefficient (Kf)

A measurement that is used to reflect the permeability of the pulmonary vasculature to fluid.

Autosomal dominant brachyolmia

A disorder that is typified by short stature, a short trunk and curved spine.

Spondylometaphyseal dysplasia

A skeletal disorder that is typified by short stature and abnormalities in the vertebrae and tubular bones.

Charcot–Marie–Tooth disease

Also known as hereditary motor and sensory neuropathy. This disease, named after the three doctors who first identified it, is one of the most common inherited neuropathies. Symptoms include weakness, motor atrophy and foot deformities.

Focal segmental glomerulosclerosis

A disease that is typified by glomerular scarring, which results in proteinuria, oedema and the eventual need for dialysis.

Familial episodic pain syndrome

A rare disorder that is typified by periods of severe pain in the trunk and upper body. Episodes are typically triggered by cold temperatures and/or a low energy state brought about by hunger or fatigue.

Mucolipidosis type IV

A lysosomal storage disorder. Symptoms typically present during the first year of life and affected individuals suffer from psychomotor retardation, ophthalmological abnormalities and anaemia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, M., McAlexander, M., Bíró, T. et al. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10, 601–620 (2011). https://doi.org/10.1038/nrd3456

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3456

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research