Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Hepatitis C virus replicons: potential role for drug development

Abstract

The development of causal therapies depends on the availability of systems to determine the inhibitory capacity of a compound. As viruses are obligate intracellular parasites, the efficacy of an antiviral drug is usually evaluated in a cell-culture system. Unfortunately, the hepatitis C virus, the principal causative agent of acute and chronic liver disease, cannot be propagated efficiently in the laboratory. However, the recent development of a replicon system opens up an encouraging possibility for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the organization of the HCV genome and the structure of a subgenomic replicon.
Figure 2: Establishment of cell clones that carry self-replicating HCV replicons.
Figure 3: Location of cell-culture-adaptive mutations.
Figure 4: Potential approaches to use the HCV-replicon system for drug development and high-throughput screening.

Similar content being viewed by others

References

  1. Lauer, G. M. & Walker, B. D. Hepatitis C virus infection. N. Engl. J. Med. 345, 41–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 81, 1631–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg, S. Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313, 451–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr. Top. Microbiol. Immunol. 242, 55–84 (2000).

    CAS  PubMed  Google Scholar 

  5. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476–1483 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, C., Sarnow, P. & Siddiqui, A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 67, 3338–3344 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nature Struct. Biol. 7, 1105–1110 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, Z. et al. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20, 3840–3848 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7, 710–721 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, D. W., Gwack, Y., Han, J. H. & Choe, J. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem. Biophys. Res. Commun. 215, 160–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Suzich, J. A. et al. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J. Virol. 67, 6152–6158 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gwack, Y., Kim, D. W., Han, J. H. & Choe, J. Characterization of RNA binding activity and RNA helicase activity of the hepatitis C virus NS3 protein. Biochem. Biophys. Res. Commun. 225, 654–659 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Tai, C. L., Chi, W. K., Chen, D. S. & Hwang, L. H. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70, 8477–8484 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Behrens, S. E., Tomei, L. & De, F. R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15, 12–22 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lohmann, V., Körner, F., Herian, U. & Bartenschlager, R. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416–8428 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Egger, D. et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974–5984 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartenschlager, R. & Lohmann, V. Novel cell culture systems for the hepatitis C virus. Antiviral Res. 52, 1–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kato, N. & Shimotohno, K. Systems to culture hepatitis C virus. Curr. Top. Microbiol. Immunol. 242, 261–278 (2000).

    CAS  PubMed  Google Scholar 

  20. Behrens, S. E., Grassmann, C. W., Thiel, H. J., Meyers, G. & Tautz, N. Characterization of an autonomous subgenomic pestivirus RNA replicon. J. Virol. 72, 2364–2372 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Khromykh, A. A. & Westaway, E. G. Subgenomic replicons of the flavivirus Kunjin: construction and applications. J. Virol. 71, 1497–1505 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan, G. & Racaniello, V. R. Construction and characterization of poliovirus subgenomic replicons. J. Virol. 62, 1687–1696 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Krieger, N., Lohmann, V. & Bartenschlager, R. Enhancement of hepatitis C virus RNA replication by cell-culture-adaptive mutations. J. Virol. 75, 4614–4624 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lohmann, V., Körner, F., Dobierzewska, A. & Bartenschlager, R. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J. Virol. 75, 1437–1449 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, J. T., Bichko, V. V. & Seeger, C. Effect of α-interferon on the hepatitis C virus replicon. J. Virol. 75, 8516–8523 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikeda, M., Yi, M., Li, K. & Lemon, S. M. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76, 2997–3006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frese, M., Pietschmann, T., Moradpour, D., Haller, O. & Bartenschlager, R. Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol. 82, 723–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Pietschmann, T. et al. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J. Virol. 76, 4008–4021 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 75, 12047–12057 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friebe, P. & Bartenschlager, R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 76, 5326–5338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheney, I. W. et al. Mutations in NS5B polymerase of hepatitis C virus: impacts on in vitro enzymatic activity and viral RNA replication in the subgenomic replicon cell culture. Virology 297, 298–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Frese, M. et al. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35, 694–703 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Tardif, K. D., Mori, K. & Siddiqui, A. Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453–7459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pflugheber, J. et al. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl Acad. Sci. USA 99, 4650–4655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yi, M., Bodola, F. & Lemon, S. M. Subgenomic hepatitis C virus (HCV) replicons inducing the expression of a secreted enzymatic reporter protein. (in the press).

  38. Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K. & Bartenschlager, R. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J. Virol. 75, 1252–1264 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young, S. D. Inhibition of HIV-1 integrase by small molecules: the potential for a new class of AIDS chemotherapeutics. Curr. Opin. Drug Discov. Dev. 4, 402–410 (2001).

    CAS  Google Scholar 

  40. Zoulim, F. & Trepo, C. New antiviral agents for the therapy of chronic hepatitis B virus infection. Intervirology 42, 125–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863 (1982).

    CAS  PubMed  Google Scholar 

  42. Yi, M. & Lemon, S. M. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J. Virol. 76, 1171–1180 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Tomassi, A. et al. Cell clones selected from the Huh7 human hepatoma cell line support efficient replication of a subgenomic GB virus B replicon. J. Virol. 76, 7736–7746 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kishine, H. et al. Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochem. Biophys. Res. Commun. 293, 993–999 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Sureau, C., Romet-Lemonne, J. L., Mullins, J. I. & Essex, M. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell 47, 37–47 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Gripon, P. et al. Successful HBV infection of a novel highly differentiated human hepatoma cell line. Proc. Natl Acad. Sci. USA (in the press).

Download references

Acknowledgements

I thank all the members of my laboratory for helpful and stimulating discussions, and M. Frese, V. Lohmann, T. Pietschmann and S. Sparacio for a critical reading of the manuscript. I also thank J. Bukh, O. Flores, B. Gu, S. Lemon and C. M. Rice for sharing data before publication. My apologies to all the scientists whose work and discoveries I could not refer to and cite because of space limitations. The work carried out in my laboratory was supported by grants from the European Union and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

IFN-α

FURTHER INFORMATION

Encyclopedia of Life Ssiences

Hepatitis C virus

European Molecular Biology Laboratory

Glossary

ACTINOMYCIN D

A drug that selectively blocks RNA synthesis from DNA but not RNA templates. Therefore, replication of positive-strand RNA genomes that is mediated by an RdRp continues in infected cells, whereas transcription of cellular genes is blocked.

BICISTRONIC REPLICON

Consists of two cistrons, one translated under the control of the HCV IRES and the second one under the control of a heterologous IRES element. We used the IRES of the encephalomyocarditis virus because this element is efficient in a broad range of cell lines, and is well studied.

CISTRON

In this case, refers to a genetic unit that is expressed as a single protein.

NEGATIVE-STRAND RNA

Generated during RNA replication and — as far as we know — does not code for viral proteins.

POSITIVE-STRAND RNA

Has the same polarity as cellular messenger RNA and can therefore be used directly for the expression of a protein. Viruses that have genomes with this property are classified as positive-strand RNA viruses. HCV is one member of this class. The complement is a negative-strand RNA.

REPLICON

A genetic element that can replicate under its own control in a cell. Such an element can be DNA (for example, a plasmid) or RNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartenschlager, R. Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov 1, 911–916 (2002). https://doi.org/10.1038/nrd942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing