Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glycogen storage disease type I and G6Pase-β deficiency: etiology and therapy

Abstract

Glycogen storage disease type I (GSD-I) consists of two subtypes: GSD-Ia, a deficiency in glucose-6-phosphatase-α (G6Pase-α) and GSD-Ib, which is characterized by an absence of a glucose-6-phosphate (G6P) transporter (G6PT). A third disorder, G6Pase-β deficiency, shares similarities with this group of diseases. G6Pase-α and G6Pase-β are G6P hydrolases in the membrane of the endoplasmic reticulum, which depend on G6PT to transport G6P from the cytoplasm into the lumen. A functional complex of G6PT and G6Pase-α maintains interprandial glucose homeostasis, whereas G6PT and G6Pase-β act in conjunction to maintain neutrophil function and homeostasis. Patients with GSD-Ia and those with GSD-Ib exhibit a common metabolic phenotype of disturbed glucose homeostasis that is not evident in patients with G6Pase-β deficiency. Patients with a deficiency in G6PT and those lacking G6Pase-β display a common myeloid phenotype that is not shared by patients with GSD-Ia. Previous studies have shown that neutrophils express the complex of G6PT and G6Pase-β to produce endogenous glucose. Inactivation of either G6PT or G6Pase-β increases neutrophil apoptosis, which underlies, at least in part, neutrophil loss (neutropenia) and dysfunction in GSD-Ib and G6Pase-β deficiency. Dietary and/or granulocyte colony-stimulating factor therapies are available; however, many aspects of the diseases are still poorly understood. This Review will address the etiology of GSD-Ia, GSD-Ib and G6Pase-β deficiency and highlight advances in diagnosis and new treatment approaches, including gene therapy.

Key Points

  • Glycogen storage disease type I (GSD-I) comprises GSD-Ia, a deficiency in glucose-6-phosphatase-α (G6Pase-α) and GSD-Ib, a deficiency in a glucose-6-phosphate transporter (G6PT)

  • G6Pase-α is expressed primarily in gluconeogenic tissues, whereas G6PT is ubiquitously expressed; G6Pase-α couples functionally to G6PT to form a complex that maintains interprandial blood glucose homeostasis

  • Patients with GSD-I display a metabolic phenotype characterized by hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, lactic acidemia, growth retardation and long-term renal and liver disease

  • G6Pase-β is ubiquitously expressed and couples functionally to G6PT to form a complex that maintains neutrophil homeostasis and function

  • Patients with GSD-Ib and those with G6Pase-β-deficiency exhibit a common myeloid phenotype characterized by neutropenia and neutrophil dysfunction

  • Patients with GSD-Ia or GSD-Ib are treated by dietary therapies to correct metabolic abnormalities; to correct myeloid dysfunction, individuals with GSD-Ib or G6Pase-β deficiency require therapy with granulocyte colony-stimulating factor

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The primary anabolic and catabolic pathways of glucose-6-phosphate in gluconeogenic organs.
Figure 2: Glucose homeostasis in gluconeogenic organs and neutrophils.
Figure 3: Proposed roles of the active-site residues in G6Pase-α and G6Pase-β during catalysis.
Figure 4: Proposed pathways for glucose-6-phosphate metabolism in neutrophils.

Similar content being viewed by others

References

  1. Chou, J. Y., Matern, D., Mansfield, B. C. & Chen, Y. T. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr. Mol. Med. 2, 121–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Chou, J. Y. & Mansfield, B. C. in Membrane Transporter Diseases, Ch. 13 (eds Broer, S. & Wagner, C. A.) 191–205 (Springer, New York, 2003).

    Book  Google Scholar 

  3. Lei, K.-J., Shelly, L. L., Pan, C.-J., Sidbury, J. B. & Chou, J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–583 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Lei, K.-J., Pan, C.-J., Shelly, L. L., Liu, J.-L. & Chou, J. Y. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J. Clin. Invest. 93, 1994–1999 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hiraiwa, H., Pan, C.-J., Lin, B., Moses, S. W. & Chou, J. Y. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J. Biol. Chem. 274, 5532–5536 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Gerin, I., Veiga-da-Cunha, M., Achouri, Y., Collet, J.-F. & Van Schaftingen, E. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett. 419, 235–238 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Annabi, B. et al. The gene for glycogen-storage disease type 1b maps to chromosome 11q23. Am. J. Hum. Genet. 62, 400–405 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerin, I., Veiga-da-Cunha, M., Noël, G. & Van Schaftingen, E. Structure of the gene mutated in glycogen storage disease type Ib. Gene 227, 189–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Veiga-da-Cunha, M. et al. A gene on chromosome 11q23 coding for a putative glucose-6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. Am. J. Hum. Genet. 63, 976–983 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Veiga-da-Cunha, M. et al. The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur. J. Hum. Genet. 7, 717–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Galli, L. et al. Mutations in the glucose-6-phosphate transporter (G6PT) gene in patients with glycogen storage diseases type 1b and 1c. FEBS Lett. 459, 255–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Janecke, A. R. et al. Mutation analysis in glycogen storage disease type 1 non-a. Hum. Genet. 107, 285–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, S. Y. et al. The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J. 22, 2206–2213 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Pan, C.-J., Lei, K.-J., Chen, H., Ward, J. M. & Chou, J. Y. Ontogeny of the murine glucose-6-phosphatase system. Arch. Biochem. Biophys. 358, 17–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, B., Annabi, B., Hiraiwa, H., Pan, C.-J. & Chou, J. Y. Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J. Biol. Chem. 273, 31656–31660 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Shieh, J.-J., Pan, C.-J., Mansfield, B. C. & Chou, J. Y. A glucose-6-phosphate hydrolase, widely expressed outside the liver, can explain age-dependent resolution of hypoglycemia in glycogen storage disease type Ia. J. Biol. Chem. 278, 47098–47103 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Guionie, O., Clottes, E., Stafford, K. & Burchell, A. Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Lett. 551, 159–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh, A., Shieh, J.-J., Pan, C.-J. & Chou, J. Y. Histidine-167 is the phosphate acceptor in glucose-6-phosphatase-β forming a phosphohistidine-enzyme intermediate during catalysis. J. Biol. Chem. 279, 12479–12483 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Cheung, Y. Y. et al. Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-β. J. Clin. Invest. 117, 784–793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, S. Y., Jun, H. S., Mead, P. A., Mansfield, B. C. & Chou, J. Y. Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111, 5704–5711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boztug, K. et al. A syndrome with congenital neutropenia and mutations in G6PC3. N. Engl. J. Med. 360, 32–43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pan, C.-J., Lei, K.-J., Annabi, B. & Chou, J. Y. Transmembrane topology of glucose-6-phosphatase. J. Biol. Chem. 273, 6144–6148 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh, A., Shieh, J.-J., Pan, C.-J., Sun, M.-S. & Chou, J. Y. The catalytic center of glucose-6-phosphatase: His176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J. Biol. Chem. 277, 32837–32842 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Chou, J. Y. & Mansfield, B. C. Mutations in the glucose-6-phosphatase-α (G6PC) gene that cause type Ia glycogen storage disease. Hum. Mutat. 29, 921–930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lei, K.-J. et al. Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6-phosphatase locus. Am. J. Hum. Genet. 57, 766–771 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruni, N. et al. Enzymatic characterization of four new mutations in the glucose-6 phosphatase (G6PC) gene which cause glycogen storage disease type 1a. Ann. Hum. Genet. 63, 141–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, K. et al. Heterogeneous mutations in the glucose-6-phosphatase gene in Japanese patients with glycogen storage disease type Ia. Am. J. Med. Genet. 92, 90–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Shieh, J.-J. et al. The molecular basis of glycogen storage disease type 1a: structure and function analysis of mutations in glucose-6-phosphatase. J. Biol. Chem. 277, 5047–5053 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Angaroni, C. J. et al. Glycogen storage disease type Ia in Argentina: two novel glucose-6-phosphatase mutations affecting protein stability. Mol. Genet. Metab. 83, 276–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Keller, K. M. et al. A new mutation of the glucose-6-phosphatase gene in a 4-year-old girl with oligosymptomatic glycogen storage disease type 1a. J. Pediatr. 132, 360–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rake, J. P. et al. Identification of a novel mutation (867delA) in the glucose-6-phosphatase gene in two siblings with glycogen storage disease type Ia with different phenotypes. Hum. Mutat. 15, 381 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Matern, D., Seydewitz, H. H., Bali, D., Lang, C. & Chen, Y. T. Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur. J. Pediatr. 161 (Suppl. 1), S10–S19 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura, T., Ozawa, T., Kawasaki, T., Nakamura, H. & Sugimura, H. Glucose-6-phosphatase gene mutations in 20 adult Japanese patients with glycogen storage disease type 1a with reference to hepatic tumors. J. Gastroenterol. Hepatol. 16, 1402–1408 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Akanuma, J. et al. Glycogen storage disease type Ia: molecular diagnosis of 51 Japanese patients and characterization of splicing mutations by analysis of ectopically transcribed mRNA from lymphoblastoid cells. Am. J. Med. Genet. 91, 107–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Weston, B. W. et al. Glucose-6-phosphatase mutation G188R confers an atypical glycogen storage disease type 1b phenotype. Pediatr. Res. 48, 329–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, C.-J., Lin, B. & Chou, J. Y. Transmembrane topology of human glucose 6-phosphate transporter. J. Biol. Chem. 274, 13865–13869 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Chou, J. Y., Jun, H. S. & Mansfield, B. C. Neutropenia in type Ib glycogen storage disease. Curr. Opin. Hematol. 17, 36–42 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, L.-Y., Lin, B., Pan, C.-J., Hiraiwa, H. & Chou, J. Y. Structural requirements for the stability and microsomal transport activity of the human glucose 6-phosphate transporter. J. Biol. Chem. 275, 34280–34286 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, L.-Y., Pan, C.-J., Shieh, J.-J. & Chou, J. Y. Structure-function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum. Mol. Genet. 11, 3199–3207 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, S.-Y., Pan, C.-J., Lee, S., Peng, W. & Chou, J. Y. Functional analysis of mutations in the glucose-6-phosphate transporter that cause glycogen storage disease type Ib. Mol. Genet. Metab. 95, 220–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melis, D. et al. Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur. J. Pediatr. 164, 501–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Kure, S. et al. Glycogen storage disease type Ib without neutropenia. J. Pediatr. 137, 253–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Martens, D. H. et al. A patient with common glycogen storage disease type Ib mutations without neutropenia or neutrophil dysfunction. J. Inherit. Metab. Dis. 29, 224–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Angaroni, C. J. et al. Glycogen storage disease type Ib without neutropenia generated by a novel splice-site mutation in the glucose-6-phosphate translocase gene. Mol. Genet. Metab. 88, 96–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Martin, C. C. et al. Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein. J. Mol. Endocrinol. 29, 205–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Aróstegui, J. I. et al. A novel G6PC3 homozygous 1-bp deletion as a cause of severe congenital neutropenia. Blood 114, 1718–1719 (2009).

    Article  PubMed  Google Scholar 

  47. Xia, J. et al. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br. J. Haematol. 147, 535–542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Banugaria, S. G., Austin, S. L., Boney, A., Weber, T. J. & Kishnani, P. S. Hypovitaminosis D in glycogen storage disease type I. Mol. Genet. Metab. 99, 434–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Bandsma, R. H. et al. Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a. Pediatr. Res. 63, 702–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Melis, D. et al. The growth hormone-insulin-like growth factor axis in glycogen storage disease type 1: evidence of different growth patterns and insulin-like growth factor levels in patients with glycogen storage disease type 1a and 1b. J. Pediatr. 156, 663–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Kilpatrick, L. et al. Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. J. Clin. Invest. 86, 196–202 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gitzelmann, R. & Bosshard, N. U. Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur. J. Pediatr. 152 (Suppl. 1), S33–S38 (1993).

    Article  PubMed  Google Scholar 

  53. Visser, G. et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J. Pediatr. 137, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Dieckgraefe, B. K., Korzenik, J. R., Husain, A. & Dieruf, L. Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. Eur. J. Pediatr. 161 (Suppl. 1), S88–S92 (2002).

    Article  PubMed  Google Scholar 

  55. Melis, D. et al. Increased prevalence of thyroid autoimmunity and hypothyroidism in patients with glycogen storage disease type I. J. Pediatr. 150, 300–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kuijpers, T. W. et al. Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b). Blood 101, 5021–5024 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, L.-Y. et al. Impaired glucose homeostasis, neutrophil trafficking and function in mice lacking the glucose-6-phosphate transporter. Hum. Mol. Genet. 12, 2547–2558 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Stjernholm, R. L., Burns, C. P. & Hohnadel, J. H. Carbohydrate metabolism by leukocytes. Enzyme 13, 7–31 (1972).

    Article  CAS  PubMed  Google Scholar 

  59. Bashan, N., Potashnik, R., Hagay, Y. & Moses, S. W. Impaired glucose transport in polymorphonuclear leukocytes in glycogen storage disease Ib. J. Inherit. Metab. Dis. 10, 234–241 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Verhoeven, A. J. et al. A convenient diagnostic function test of peripheral blood neutrophils in glycogen storage disease type Ib. Pediatr. Res. 45, 881–885 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Medina, R. A., Southworth, R., Fuller, W. & Garlick, P. B. Lactate-induced translocation of GLUT1 and GLUT4 is not mediated by the phosphatidyl-inositol-3-kinase pathway in the rat heart. Basic Res. Cardiol. 97, 168–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, M. S. et al. ATP stimulates glucose transport through activation of P2 purinergic receptors in C2C12 skeletal muscle cells. Arch. Biochem. Biophys. 401, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rake, J. P. et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatr. 161 (Suppl. 1), S20–S34 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Chou, J. Y., Mansfield, B. C. & Weinstein, D. A. in Genetic Diseases of the Kidney Ch. 41 (eds Lifton, R. P. et al.) 693–708 (Academic Press, New York, 2009).

    Book  Google Scholar 

  65. Weinstein, D. A., Somers, M. J. & Wolfsdorf, J. I. Decreased urinary citrate excretion in type 1a glycogen storage disease. J. Pediatr. 138, 378–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, Y. T., Coleman, R. A., Scheinman, J. I., Kolbeck, P. C. & Sidbury, J. B. Renal disease in type I glycogen storage disease. N. Engl. J. Med. 318, 7–11 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Verani, R. & Bernstein, J. Renal glomerular and tubular abnormalities in glycogen storage disease type I. Arch. Pathol. Lab. Med. 112, 271–274 (1988).

    CAS  PubMed  Google Scholar 

  68. Baker, L. et al. Hyperfiltration and renal disease in glycogen storage disease, type I. Kidney Int. 35, 1345–1350 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Urushihara, M. et al. Transforming growth factor-beta in renal disease with glycogen storage disease I. Pediatr. Nephrol. 19, 676–678 (2004).

    Article  PubMed  Google Scholar 

  70. Yiu, W. H. et al. Angiotensin mediates renal fibrosis in the nephropathy of glycogen storage disease type Ia. Kidney Int. 73, 716–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Yiu, W. H., Mead, P. A., Jun, H. S., Mansfield, B. C. & Chou, J. Y. Oxidative stress mediates nephropathy in type Ia glycogen storage disease. Lab. Invest. 90, 620–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bianchi, L. Glycogen storage disease I and hepatocellular tumours. Eur. J. Pediatr. 52 (Suppl. 1), S63–S70 (1993).

    Article  Google Scholar 

  73. Labrune, P., Trioche, P., Duvaltier, I., Chevalier, P. & Odièvre, M. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J. Pediatr. Gastroenterol. Nutr. 24, 276–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, P. J. Glycogen storage disease type I: pathophysiology of liver adenomas. Eur. J. Pediatr. 161 (Suppl. 1), S46–S49 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Weinstein, D. A. et al. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100, 3776–3781 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Franco, L. M. et al. Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. J. Inherit. Metab. Dis. 28, 153–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Di Rocco, M. et al. Hepatocellular adenoma and metabolic balance in patients with type Ia glycogen storage disease. Mol. Genet. Metab. 93, 398–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, S. Y., Weinstein, D. A., Starost, M. F., Mansfield, B. C. & Chou, J. Y. Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia. J. Hepatol. 48, 479–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Sun, B. et al. Activation of glycolysis and apoptosis in glycogen storage disease type Ia. Mol. Genet. Metab. 97, 267–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Zucman-Rossi, J. et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Bioulac-Sage, P. et al. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46, 740–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kishnani, P. S. et al. Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease. Hum. Mol. Genet. 18, 4781–4790 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Lei, K.-J. et al. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat. Genet. 13, 203–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Kishnani, P. S. et al. Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet. Pathol. 38, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Rake, J. P. et al. Glycogen storage disease type Ia: recent experience with mutation analysis, a summary of mutations reported in the literature and a newly developed diagnostic flowchart. Eur. J. Pediatr. 159, 322–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Greene, H. L., Slonim, A. E., O'Neill, J. A. Jr & Burr, I. M. Continuous nocturnal intragastric feeding for management of type 1 glycogen-storage disease. N. Engl. J. Med. 294, 423–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Y. T., Cornblath, M. & Sidbury, J. B. Cornstarch therapy in type I glycogen-storage disease. N. Engl. J. Med. 310, 171–175 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Koeberl, D. D., Kishnani, P. S., Bali, D. & Chen, Y. T. Emerging therapies for glycogen storage disease type I. Trends Endocrinol. Metab. 20, 252–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Weinstein, D. A. & Wolfsdorf, J. I. Effect of continuous glucose therapy with uncooked cornstarch on the long-term clinical course of type 1a glycogen storage disease. Eur. J. Pediatr. 161 (Suppl. 1), S35–S39 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Correia, C. E. et al. Use of modified cornstarch therapy to extend fasting in glycogen storage disease types Ia and Ib. Am. J. Clin. Nutr. 88, 1272–1276 (2008).

    CAS  PubMed  Google Scholar 

  91. Nagasaka, H. et al. Improvements of hypertriglyceridemia and hyperlacticemia in Japanese children with glycogen storage disease type Ia by medium-chain triglyceride milk. Eur. J. Pediatr. 166, 1009–1016 (2007).

    Article  PubMed  Google Scholar 

  92. Melis, D. et al. Efficacy of ACE-inhibitor therapy on renal disease in glycogen storage disease type 1: a multicentre retrospective study. Clin. Endocrinol. (Oxf.) 63, 19–25 (2005).

    Article  CAS  Google Scholar 

  93. Martens, D. H. et al. Renal function in glycogen storage disease type I, natural course, and renopreservative effects of ACE inhibition. Clin. J. Am. Soc. Nephrol. 4, 1741–1746 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Visser, G. et al. Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur. J. Pediatr. 161 (Suppl. 1), S83–S87 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Calderwood, S. et al. Recombinant human granulocyte colony-stimulating factor therapy for patients with neutropenia and/or neutrophil dysfunction secondary to glycogen storage disease type 1b. Blood 97, 376–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Visser, G. et al. Consensus guidelines for management of glycogen storage disease type 1b—European Study on Glycogen Storage Disease Type 1. Eur. J. Pediatr. 161 (Suppl. 1), S120–S123 (2002).

    PubMed  Google Scholar 

  97. Davis, M. K., Rufo, P. A., Polyak, S. F. & Weinstein, D. A. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J. Inherit. Metab. Dis. doi: 10.1007/s10545-077-0774-9.

  98. Donadieu, J. et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90, 45–53 (2005).

    PubMed  Google Scholar 

  99. Simmons, P. S., Smithson, W. A., Gronert, G. A. & Haymond, M. W. Acute myelogenous leukemia and malignant hyperthermia in a patient with type 1b glycogen storage disease. J. Pediatr. 105, 428–431 (1984).

    Article  CAS  PubMed  Google Scholar 

  100. Pinsk, M. et al. Acute myelogenous leukemia and glycogen storage disease 1b. J. Pediatr. Hematol. Oncol. 24, 756–758 (2002).

    Article  PubMed  Google Scholar 

  101. Schroeder, T., Hildebrandt, B., Mayatepek, E., Germing, U. & Haas, R. A patient with glycogen storage disease type Ib presenting with acute myeloid leukemia (AML) bearing monosomy 7 and translocation t(3;8)(q26;q24) after 14 years of treatment with granulocyte colony-stimulating factor (G-CSF): a case report. J. Med. Case Reports 2, 319 (2008).

    Article  PubMed Central  Google Scholar 

  102. Faivre, L. et al. Long-term outcome of liver transplantation in patients with glycogen storage disease type Ia. J. Inherit. Metab. Dis. 22, 723–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Matern, D. et al. Liver transplantation for glycogen storage disease types, I, III, and IV. Eur. J. Pediatr. 158 (Suppl. 2), S43–S48 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Davis, M. K. & Weinstein, D. A. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr. Transplant. 12, 137–145 (2008).

    Article  PubMed  Google Scholar 

  105. Reddy, S. K. et al. Liver transplantation for glycogen storage disease type Ia. J. Hepatol. 51, 483–490 (2009).

    Article  PubMed  Google Scholar 

  106. Labrune, P. Glycogen storage disease type I: indications for liver and/or kidney transplantation. Eur. J. Pediatr. 161 (Suppl. 1), S53–S55 (2002).

    Article  PubMed  Google Scholar 

  107. Reddy, S. K. et al. Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia. J. Hepatol. 47, 658–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Iyer, S. G. et al. Long-term results of living donor liver transplantation for glycogen storage disorders in children. Liver Transpl. 13, 848–852 (2007).

    Article  PubMed  Google Scholar 

  109. Kasahara, M. et al. Living donor liver transplantation for glycogen storage disease type Ib. Liver Transpl. 15, 1867–1871 (2009).

    Article  PubMed  Google Scholar 

  110. Ji, H. F. et al. Reduced-size liver transplantation for glycogen storage disease. Hepatobiliary Pancreat. Dis. Int. 8, 106–108 (2009).

    PubMed  Google Scholar 

  111. Kim, S. Y. et al. Bone-marrow derived cells require a functional glucose-6-phosphate transporter for normal myeloid functions. J. Biol. Chem. 281, 28794–28801 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Pierre, G. et al. A. Bone marrow transplantation in glycogen storage disease type 1b. J. Pediatr. 152, 286–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Zingone, A. et al. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J. Biol. Chem. 275, 828–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Koeberl, D. D. et al. Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia. Mol. Ther. 15, 1253–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Ghosh, A. et al. Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Ther. 13, 321–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Koeberl, D. D. et al. Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia. Gene Ther. 13, 1281–1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Koeberl, D. D. et al. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol. Ther. 16, 665–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Yiu, W. H. et al. Complete normalization of hepatic G6PC deficiency in murine glycogen storage disease type Ia using gene therapy. Mol. Ther. 18, 1076–1084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, Z., Miller, E., Agbandje-McKenna, M. & Samulski, R. J. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J. Virol. 80, 9093–9103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Akache, B. et al. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J. Virol. 80, 9831–9836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yiu, W. H., Pan, C.-J., Allamarvdasht, M., Kim, S. Y. & Chou, J. Y. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther. 14, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Yiu, W. H. et al. Normoglycemia alone is insufficient to prevent long-term complications of hepatocellular adenoma in glycogen storage disease type Ib mice. J. Hepatol. 51, 909–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Intramural Research Program of the National Institute of Child Health & Human Development (NICHD), NIH.

Author information

Authors and Affiliations

Authors

Contributions

J. Y. Chou and H. S. Jun researched the data for the article. J. Y. Chou and B. C. Mansfield provided a substantial contribution to discussions of the content and contributed equally to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Janice Y. Chou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, J., Jun, H. & Mansfield, B. Glycogen storage disease type I and G6Pase-β deficiency: etiology and therapy. Nat Rev Endocrinol 6, 676–688 (2010). https://doi.org/10.1038/nrendo.2010.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing