Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunity, thyroid function and pregnancy: molecular mechanisms

Abstract

Pregnancy and the postpartum period have a profound effect on autoimmune thyroid disease. Graves disease ameliorates during pregnancy, only to relapse postpartum, whereas postpartum thyroiditis is caused by destructive thyroiditis during the first few months after delivery. The immunology of pregnancy underlies these changes: the mother must maintain tolerance of the fetal semi-allograft while not suppressing her own immune system and exposing herself and the fetus to infection. Nonspecific factors, including hormonal changes, trophoblast expression of key immunomodulatory molecules and a switch to a predominantly T-helper-2-type pattern of cytokines, play some part in the maintenance of transient tolerance to paternal antigens in pregnancy; however, the generation of specific regulatory T (TREG) cells is key to this maintenance. TREG cells preferentially accumulate in the decidua but may also be present in the mother's circulation and are thus capable of regulating coincidental autoimmune responses through the phenomenon of linked suppression. In turn, this suppression may explain why thyroid autoantibody levels decline during pregnancy, which leads to remission of Graves disease. Postpartum exacerbation of autoimmunity may reflect an imbalance in TREG cells, which is caused by the rapid fall in the numbers of these cells after delivery.

Key Points

  • Women are exposed to fetal alloantigens during pregnancy and must establish immunological tolerance to these antigens to prevent rejection of the fetus

  • A generalized reduction of maternal immune responsiveness occurs during pregnancy, which is caused by increased levels of progesterone

  • The trophoblast synthesizes a number of immunologically active molecules that suppress immune responses at the interface between mother and placenta

  • Most importantly, the mother generates regulatory T (TREG) cells early in pregnancy that maintain a state of tolerance to fetal alloantigens as long as the pregnancy continues

  • These TREG cells may ameliorate coincidental autoimmune thyroid diseases during pregnancy by linked suppression; worsening of these diseases postpartum may result from changes in the TREG cell and cytokine milieu

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in a | thyroid autoantibody levels and TREG cell function and b | thyroid function in women with autoimmune thyroid disease during and after pregnancy.
Figure 2: Basic mechanisms that underlie the creation and maintenance of tolerance to self antigens.
Figure 3: Summary of the mechanisms involved in maternal tolerance to the fetal semi-allograft.

Similar content being viewed by others

References

  1. Robertson, H. E. W. Lassitude, coldness and hair changes following pregnancy and their response to treatment with thyroid extract. Br. Med. J. 2 (Suppl.), S93–S98 (1948).

    Google Scholar 

  2. Cooke, R. T. Myxoedema in young women. J. Coll. Gen. Pract. 6, 626–630 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Amino, N., Miyai, K., Onishi, T., Hashimoto, T. & Arai, K. Transient hypothyroidism after delivery in autoimmune thyroiditis. J. Clin. Endocrinol. Metab. 42, 296–301 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Ginsberg, J. & Walfish P. G. Post-partum transient thyrotoxicosis with painless thyroiditis. Lancet 1, 1125–1128 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Chan, G. W. & Mandel, S. J. Therapy insight: management of Graves' disease during pregnancy. Nat. Clin. Pract. Endocrinol. Metab. 3, 470–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Prummel, M. F. & Wiersinga, W. M. Thyroid autoimmunity and miscarriage. Eur. J. Endocrinol. 150, 751–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Caturegli, P. et al. Autoimmune hypophysitis. Endocr. Rev. 26, 599–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ulmanen, I., Halonen, M., Ilmarinen, T. & Peltonen, L. Monogenic autoimmune diseases—lessons of self-tolerance. Curr. Opin. Immunol. 17, 609–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Mueller, D. L. Mechanisms maintaining peripheral tolerance. Nat. Immunol. 11, 21–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Germain, R. N. Special regulatory T-cell review: a rose by any other name: from suppressor T cells to Tregs, approbation to unbridled enthusiasm. Immunology 123, 20–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Penhale, W. J., Irvine, W. J., Inglis, J. R. & Farmer, A. Thyroiditis in T cell-depleted rats: suppression of the autoallergic response by reconstitution with normal lymphoid cells. Clin. Exp. Immunol. 25, 6–16 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  14. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, G. P., Brown, N. K. & Kong, Y. C. Naturally-existing CD4(+)CD25(+)Foxp3(+) regulatory T cells are required for tolerance to experimental autoimmune thyroiditis induced by either exogenous or endogenous autoantigen. J. Autoimmun. 33, 68–76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Billington, W. D. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J. Reprod. Immunol. 60, 1–11 (2003).

    Article  PubMed  Google Scholar 

  18. Adams Waldorf, K. M. & Nelson, J. L. Autoimmune disease during pregnancy and the microchimerism legacy of pregnancy. Immunol. Invest. 37, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guleria, I. & Sayegh, M. H. Maternal acceptance of the fetus: true human tolerance. J. Immunol. 178, 3345–3351 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Tafuri, A., Alferink, J., Möller, P., Hämmerling, G. J. & Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. P. & Szekeres-Bartho, J. Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 58, 268–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Murphy, S. P., Choi, J. C. & Holtz, R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod. Biol. Endocrinol. 2, 52 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rogers, A. M., Boime, I., Connolly, J., Cook, J. R. & Russell, J. H. Maternal-fetal tolerance is maintained despite transgene-driven trophoblast expression of MHC class I, and defects in Fas and its ligand. Eur. J. Immunol. 28, 3479–3487 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Erlebacher, A., Vencato, D., Price, K. A., Zhang, D. & Glimcher, L. H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest. 117, 1399–1411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hunt, J. S., Langat, D. K., McIntire, R. H. & Morales, P. J. The role of HLA-G in human pregnancy. Reprod. Biol. Endocrinol. 4 (Suppl. 1), S10 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Le Bouteiller, P. & Piccinni, M. P. Human NK cells in pregnant uterus: why there? Am. J. Reprod. Immunol. 59, 401–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Paiva, P., Menkhorst, E., Salamonsen, L. & Dimitriadis, E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 20, 319–328 (2009).

    Article  PubMed  Google Scholar 

  30. Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. White, C. A., Johansson, M., Roberts, C. T., Ramsay, A. J. & Robertson, S. A. Effect of interleukin-10 null mutation on maternal immune response and reproductive outcome in mice. Biol. Reprod. 70, 123–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Fitzgerald, J. S., Toth, B., Jeschke, U., Schleussner, E. & Markert, U. R. Knocking off the suppressors of cytokine signaling (SOCS): their roles in mammalian pregnancy. J. Reprod. Immunol. 83, 117–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zenclussen, A. C. et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol. 166, 811–822 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Somerset, D. A., Zheng, Y., Kilby, M. D., Sansom, D. M. & Drayson, M. T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112, 38–43 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heikkinen, J., Möttönen, M., Alanen, A. & Lassila, O. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol. 136, 373–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tilburgs, T. et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 180, 5737–5745 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Schumacher, A. et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 182, 5488–5497 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Shao, L., Jacobs, A. R., Johnson, V. V. & Mayer, L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol. 174, 7539–7547 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Polanczyk, M. J., Hopke, C., Huan, J., Vandenbark, A. A. & Offner, H. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J. Neuroimmunol. 170, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mjösberg, J., Berg, G., Jenmalm, M. C. & Ernerudh, J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol. Reprod. 82, 698–705 (2010).

    Article  PubMed  Google Scholar 

  43. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Mjösberg, J. et al. Systemic reduction of functionally suppressive CD4dimCD25highFoxp3+ Tregs in human second trimester pregnancy is induced by progesterone and 17beta-estradiol. J. Immunol. 183, 759–769 (2009).

    Article  PubMed  Google Scholar 

  45. Wafula, P. O. et al. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. Am. J. Reprod. Immunol. 62, 283–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Santner-Nanan, B. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 183, 7023–7030 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Imaizumi, M. et al. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology 142, 823–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, Y. L. et al. Increased fetal abortion rate in autoimmune thyroid disease is related to circulating TPO autoantibodies in an autoimmune thyroiditis animal model. Fertil. Steril. 91 (Suppl. 5), 2104–2109 (2009).

    Article  PubMed  Google Scholar 

  50. Imaizumi, M. et al. Non-MHC driven exacerbation of experimental thyroiditis in the postpartum period. Autoimmunity 34, 95–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. McClain, M. A. et al. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J. Immunol. 179, 8146–8152 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, C. et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 126, 329–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi, X. et al. Circulating lymphocyte subsets and regulatory T cells in patients with postpartum thyroiditis during the first postpartum year. Clin. Exp. Med. 9, 263–267 (2009).

    Article  PubMed  Google Scholar 

  54. Al-Shammri, S. et al. Th1/Th2 cytokine patterns and clinical profiles during and after pregnancy in women with multiple sclerosis. J. Neurol. Sci. 222, 21–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kokandi, A. A., Parkes, A. B., Premawardhana, L. D., John, R. & Lazarus, J. H. Association of postpartum thyroid dysfunction with antepartum hormonal and immunological changes. J. Clin. Endocrinol. Metab. 88, 1126–1132 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Weetman, A. P. Immune reconstitution syndrome and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 23, 693–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Carp, H. J., Meroni, P. L. & Shoenfeld, Y. Autoantibodies as predictors of pregnancy complications. Rheumatology (Oxford) 47 (Suppl. 3), 6–8 (2008).

    Google Scholar 

  58. Vukusic, S. et al. The Prevention of Post-Partum Relapses with Progestin and Estradiol in Multiple Sclerosis (POPART'MUS) trial: rationale, objectives and state of advancement. J. Neurol. Sci. 286, 114–118 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weetman, A. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol 6, 311–318 (2010). https://doi.org/10.1038/nrendo.2010.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing