Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of homeodomain transcription factors in heritable pituitary disease

Abstract

The anterior pituitary gland secretes hormones that regulate developmental and physiological processes, including growth, the stress response, metabolic status, reproduction and lactation. During embryogenesis, cellular determination and differentiation events establish specialized hormone-secreting cell types within the anterior pituitary gland. These developmental decisions are mediated in part by the actions of a cascade of transcription factors, many of which belong to the homeodomain class of DNA-binding proteins. The discovery of some of these regulatory proteins has facilitated genetic analyses of patients with hormone deficiencies. The findings of these studies reveal that congenital defects—ranging from isolated hormone deficiencies to combined pituitary hormone deficiency syndromes—are sometimes associated with mutations in the genes encoding pituitary-acting developmental transcription factors. The phenotypes of affected individuals and animal models have together provided useful insights into the biology of these transcription factors and have suggested new hypotheses for testing in the basic science laboratory. Here, we summarize the gene regulatory pathways that control anterior pituitary development, with emphasis on the role of the homeodomain transcription factors in normal pituitary organogenesis and heritable pituitary disease.

Key Points

  • Investigating the molecular biology of pituitary development has allowed translation of research findings into the clinic and subsequent reciprocal transfer of information back from patients to the basic science laboratory

  • Many regulatory genes involved in pituitary development have been characterized; however, the etiology of most cases of combined pituitary hormone deficiency (CPHD) remains unknown

  • Septo-optic dysplasia is a relatively common cause of CPHD, but rarely involves mutations in the gene encoding the homeodomain transcription factor HESX1

  • All mutations identified in the genes of pituitary-acting homeodomain transcription factors are associated with variable phenotypes, which makes strict genotype–phenotype correlations challenging

  • Patients with CPHD are at risk of developing additional hormone deficiencies over time; therefore, careful follow-up and long-term testing is critical

  • When disease-related mutations are identified, genetic counseling can be useful to predict which additional hormone deficiencies may develop, as well as to evaluate the potential risk for future children

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular regulation of anterior pituitary gland development.

Similar content being viewed by others

References

  1. Alatzoglou, K. S. & Dattani, M. T. Genetic causes and treatment of isolated growth hormone deficiency—an update. Nat. Rev. Endocrinol. 6, 562–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, S. W. et al. Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol. Cell Endocrinol. 323, 4–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Kelberman, D. & Dattani, M. T. The role of transcription factors implicated in anterior pituitary development in the aetiology of congenital hypopituitarism. Ann. Med. 38, 560–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Kelberman, D., Rizzoti, K., Lovell-Badge, R., Robinson, I. C. & Dattani, M. T. Genetic regulation of pituitary gland development in human and mouse. Endocr. Rev. 30, 790–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Romero, C. J., Nesi-França, S. & Radovick, S. The molecular basis of hypopituitarism. Trends Endocrinol. Metab. 20, 506–516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, X., Gleiberman, A. S. & Rosenfeld, M. G. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol. Rev. 87, 933–963 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Vallette-Kasic, S. et al. Congenital isolated adrenocorticotropin deficiency: an underestimated cause of neonatal death, explained by TPIT mutations. J. Clin. Endocrinol. Metabol. 90, 1323–1331 (2005).

    Article  CAS  Google Scholar 

  8. Bell, J. et al. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab. 95, 167–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Phillips, J. 3rd, Vnencak-Jones, C. & Layman, L. PROP1-related combined pituitary hormone deficiency (CPHD). Gene Reviews at Gene Tests: Medical Genetics Information Resource [online], (2005).

  10. Toogood, A. A. & Stewart, P. M. Hypopituitarism: clinical features, diagnosis, and management. Endocrinol. Metab. Clin. North Am. 37, 235–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Walvoord, E. Sex steroid replacement for induction of puberty in multiple pituitary hormone deficiency. Pediatr. Endocrinol. Rev. 6 (Suppl. 2), 298–305 (2009).

    PubMed  Google Scholar 

  12. Richmond, E. J. & Rogol, A. D. Male pubertal development and the role of androgen therapy. Nat. Clin. Pract. Endocrinol. Metab. 3, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Deladoëy, J. et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 84, 1645–1650 (1999).

    PubMed  Google Scholar 

  14. Mehta, A. et al. Congenital hypopituitarism: clinical, molecular and neuroradiological correlates. Clin. Endocrinol. (Oxf.) 71, 376–382 (2009).

    Article  Google Scholar 

  15. Turton, J. P. et al. Mutations within the transcription factor PROP1 are rare in a cohort of patients with sporadic combined pituitary hormone deficiency (CPHD). Clin. Endocrinol. (Oxf.) 63, 10–18 (2005).

    Article  CAS  Google Scholar 

  16. Turton, J. P. et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 90, 4762–4770 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. de Graaff, L. C. et al. PROP1, HESX1, POU1F1, LHX3 and LHX4 mutation and deletion screening and GH1 P89L and IVS3+1/+2 mutation screening in a Dutch nationwide cohort of patients with combined pituitary hormone deficiency. Horm. Res. Paediatr. 73, 363–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Patel, L., McNally, R. J., Harrison, E., Lloyd, I. C. & Clayton, P. E. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J. Pediatr. 148, 85–88 (2006).

    Article  PubMed  Google Scholar 

  19. Hoyt, W. F., Kaplan, S. L., Grumbach, M. M. & Glaser, J. S. Septo-optic dysplasia and pituitary dwarfism. Lancet 1, 893–894 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Roessmann, U. Septo-optic dysplasia (SOD) or DeMorsier syndrome. J. Clin. Neuroophthalmol. 9, 156–159 (1989).

    CAS  PubMed  Google Scholar 

  21. Birkebaek, N. H. et al. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J. Clin. Endocrinol. Metab. 88, 5281–5286 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Cameron, F. J., Khadilkar, V. V. & Stanhope, R. Pituitary dysfunction, morbidity and mortality with congenital midline malformation of the cerebrum. Eur. J. Pediatr. 158, 97–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Alatzoglou, K. S. & Dattani, M. T. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum. Dev. 85, 705–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Dasen, J. S. et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 15, 3193–3207 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ericson, J., Norlin, S., Jessell, T. M. & Edlund, T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125, 1005–1015 (1998).

    CAS  PubMed  Google Scholar 

  26. Potok, M. A. et al. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev. Dyn. 237, 1006–1020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Treier, M. et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 12, 1691–1704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Treier, M. et al. Hedgehog signaling is required for pituitary gland development. Development 128, 377–386 (2001).

    CAS  PubMed  Google Scholar 

  29. Hermesz, E., Mackem, S. & Mahon, K. A. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development 122, 41–52 (1996).

    CAS  PubMed  Google Scholar 

  30. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Gleiberman, A. S. et al. Genetic approaches identify adult pituitary stem cells. Proc. Natl Acad. Sci. USA 105, 6332–6337 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fauquier, T., Rizzoti, K., Dattani, M., Lovell-Badge, R. & Robinson, I. C. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc. Natl Acad. Sci. USA 105, 2907–2912 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kelberman, D. et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J. Clin. Invest. 116, 2442–2455 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Japón, M. A., Rubinstein, M. & Low, M. J. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J. Histochem. Cytochem. 42, 1117–1125 (1994).

    Article  PubMed  Google Scholar 

  36. Simmons, D. M. et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 4, 695–711 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Dubois, P. M., el Amraoui, A. & Héritier, A. G. Development and differentiation of pituitary cells. Microsc. Res. Tech. 39, 98–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Ingraham, H. A. et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 8, 2302–2312 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347, 528–533 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Lamolet, B. et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 104, 849–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Olson, L. E. et al. Homeodomain-mediated β-catenin-dependent switching events dictate cell-lineage determination. Cell 125, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Andoniadou, C. L. et al. Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development 134, 1499–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kelberman, D. & Dattani, M. T. Septo-optic dysplasia—novel insights into the aetiology. Horm. Res. 69, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. McNay, D. E. et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J. Clin. Endocrinol. Metab. 92, 691–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Thomas, P. Q. et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum. Mol. Genet. 10, 39–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Sobrier, M. L. et al. Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J. Clin. Endocrinol. Metab. 91, 4528–4536 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Castinetti, F. et al. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. J. Clin. Endocrinol. Metab. 93, 2790–2799 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Tajima, T. et al. A novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr. J. 54, 637–641 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Tajima, T. et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J. Clin. Endocrinol. Metab. 94, 314–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sajedi, E. et al. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Dis. Model Mech. 1, 241–254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murray, P. G., Paterson, W. F. & Donaldson, M. D. Maternal age in patients with septo-optic dysplasia. J. Pediatr. Endocrinol. Metab. 18, 471–476 (2005).

    Article  PubMed  Google Scholar 

  53. Riedl, S. et al. Refining clinical phenotypes in septo-optic dysplasia based on MRI findings. Eur. J. Pediatr. 167, 1269–1276 (2008).

    Article  PubMed  Google Scholar 

  54. Stevens, C. A. & Dobyns, W. B. Septo-optic dysplasia and amniotic bands: further evidence for a vascular pathogenesis. Am. J. Med. Genet. A 125A, 12–16 (2004).

    Article  PubMed  Google Scholar 

  55. Hunter, C. S. & Rhodes, S. J. LIM-homeodomain genes in mammalian development and human disease. Mol. Biol. Rep. 32, 67–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Sheng, H. Z. et al. Multistep control of pituitary organogenesis. Science 278, 1809–1812 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Takuma, N. et al. Formation of Rathke's pouch requires dual induction from the diencephalon. Development 125, 4835–4840 (1998).

    CAS  PubMed  Google Scholar 

  58. Thaler, J. P. et al. A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Shimomura, H. et al. Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with a strong family history. Diabetes 49, 1597–1600 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Roberson, M. S., Schoderbek, W. E., Tremml, G. & Maurer, R. A. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol. Cell Biol. 14, 2985–2993 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y., Mailloux, C. M., Hermesz, E., Palkóvits, M. & Westphal, H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev. Biol. 337, 313–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Sheng, H. Z. et al. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272, 1004–1007 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Bach, I. et al. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc. Natl Acad. Sci. USA 92, 2720–2724 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seidah, N. G. et al. The mouse homeoprotein mLIM-3 is expressed early in cells derived from the neuroepithelium and persists in adult pituitary. DNA Cell Biol. 13, 1163–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Sobrier, M. L. et al. Pathophysiology of syndromic combined pituitary hormone deficiency due to a LHX3 defect in light of LHX3 and LHX4 expression during early human development. Gene Expr. Patterns 5, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Chou, S. J. et al. Conserved regulatory elements establish the dynamic expression of Rpx/HesxI in early vertebrate development. Dev. Biol. 292, 533–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Ellsworth, B. S., Butts, D. L. & Camper, S. A. Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3-deficient mice. Dev. Biol. 313, 118–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Granger, A. et al. The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol. Endocrinol. 20, 2093–2108 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. McGillivray, S. M., Bailey, J. S., Ramezani, R., Kirkwood, B. J. & Mellon, P. L. Mouse GnRH receptor gene expression is mediated by the LHX3 homeodomain protein. Endocrinology 146, 2180–2185 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Sloop, K. W. et al. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol. Endocrinol. 13, 2212–2225 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Colvin, S. C., Mullen, R. D., Pfaeffle, R. W. & Rhodes, S. J. LHX3 and LHX4 transcription factors in pituitary development and disease. Pediatr. Endocrinol. Rev. 6 (Suppl. 2), 283–290 (2009).

    PubMed  Google Scholar 

  72. Bhangoo, A. P. et al. Clinical case seminar: a novel LHX3 mutation presenting as combined pituitary hormonal deficiency. J. Clin. Endocrinol. Metab. 91, 747–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bonfig, W., Krude, H. & Schmidt, H. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature. Eur. J. Pediatr. doi:10.1007/s004310111393-x.

  74. Kriström, B. et al. A novel mutation in the LIM homeobox 3 gene is responsible for combined pituitary hormone deficiency, hearing impairment, and vertebral malformations. J. Clin. Endocrinol. Metab. 94, 1154–1161 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Netchine, I. et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25, 182–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Pfaeffle, R. W. et al. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J. Clin. Endocrinol. Metab. 92, 1909–1919 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Rajab, A. et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum. Mol. Genet. 17, 2150–2159 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Colvin, S. C., Malik, R. E., Showalter, A. D., Sloop, K. W. & Rhodes, S. J. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo. Proc. Natl Acad. Sci. USA 108, 173–178 (2011).

    Article  PubMed  Google Scholar 

  79. Li, H. et al. Gsh-4 encodes a LIM-type homeodomain, is expressed in the developing central nervous system and is required for early postnatal survival. EMBO J. 13, 2876–2885 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, K. et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Dateki, S. et al. Mutation and gene copy number analyses of six pituitary transcription factor genes in 71 patients with combined pituitary hormone deficiency: identification of a single patient with LHX4 deletion. J. Clin. Endocrinol. Metab. 95, 4043–4047 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Machinis, K. et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am. J. Hum. Genet. 69, 961–968 (2001).

    Article  CAS  Google Scholar 

  83. Pfaeffle, R. W. et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J. Clin. Endocrinol. Metab. 93, 1062–1071 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Tajima, T., Yorifuji, T., Ishizu, K. & Fujieda, K. A novel mutation (V101A) of the LHX4 gene in a Japanese patient with combined pituitary hormone deficiency. Exp. Clin. Endocrinol. Diabetes 118, 405–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Simeone, A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ang, S. L., Conlon, R. A., Jin, O. & Rossant, J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989 (1994).

    CAS  PubMed  Google Scholar 

  87. Ang, S. L. et al. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252 (1996).

    CAS  PubMed  Google Scholar 

  88. Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A. & Bovolenta, P. Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030 (2001).

    CAS  PubMed  Google Scholar 

  89. Kurokawa, D. et al. Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm. Development 131, 3307–3317 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Dateki, S. et al. OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: functional studies using the IRBP, HESX1, and POU1F1 promoters. J. Clin. Endocrinol. Metab. 93, 3697–3702 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Diaczok, D., Romero, C., Zunich, J., Marshall, I. & Radovick, S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 93, 4351–4359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ragge, N. K. et al. Heterozygous mutations of OTX2 cause severe ocular malformations. Am. J. Hum. Genet. 76, 1008–1022 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bodner, M. et al. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55, 505–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Ingraham, H. A. et al. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55, 519–529 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Jacobson, E. M., Li, P., Leon-del-Rio, A., Rosenfeld, M. G. & Aggarwal, A. K. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 11, 198–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Scully, K. M. et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 290, 1127–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ohta, K. et al. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem. Biophys. Res. Commun. 189, 851–855 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Pfäffle, R. W. et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257, 1118–1121 (1992).

    Article  PubMed  Google Scholar 

  99. Radovick, S. et al. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257, 1115–1118 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Tatsumi, K. et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat. Genet. 1, 56–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Szeto, D. P. et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 13, 484–494 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gage, P. J., Suh, H. & Camper, S. A. Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651 (1999).

    CAS  PubMed  Google Scholar 

  103. Suh, H., Gage, P. J., Drouin, J. & Camper, S. A. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129, 329–337 (2002).

    CAS  PubMed  Google Scholar 

  104. Charles, M. A. et al. PITX genes are required for cell survival and Lhx3 activation. Mol. Endocrinol. 19, 1893–1903 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Saadi, I. et al. Identification of a dominant negative homeodomain mutation in Rieger syndrome. J. Biol. Chem. 276, 23034–23041 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Idrees, F. et al. A novel homeobox mutation in the PITX2 gene in a family with Axenfeld-Rieger syndrome associated with brain, ocular, and dental phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 184–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Meyer-Marcotty, P., Weisschuh, N., Dressler, P., Hartmann, J. & Stellzig-Eisenhauer, A. Morphology of the sella turcica in Axenfeld-Rieger syndrome with PITX2 mutation. J. Oral Pathol. Med. 37, 504–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Tümer, Z. & Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet. 17, 1527–1539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vieira, V. et al. Identification of four new PITX2 gene mutations in patients with Axenfeld-Rieger syndrome. Mol. Vis. 12, 1448–1460 (2006).

    CAS  PubMed  Google Scholar 

  110. Gage, P. J. et al. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol. Endocrinol. 10, 1570–1581 (1996).

    CAS  PubMed  Google Scholar 

  111. Sornson, M. W. et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384, 327–333 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Andersen, B. et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev. Biol. 172, 495–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Cogan, J. D. et al. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 83, 3346–3349 (1998).

    CAS  PubMed  Google Scholar 

  114. Mody, S., Brown, M. R. & Parks, J. S. The spectrum of hypopituitarism caused by PROP1 mutations. Best Pract. Res. Clin. Endocrinol. Metab. 16, 421–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Reynaud, R. et al. Genetic screening of combined pituitary hormone deficiency: experience in 195 patients. J. Clin. Endocrinol. Metab. 91, 3329–3336 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Vieira, T. C., Boldarine, V. T. & Abucham, J. Molecular analysis of PROP1, PIT1, HESX1, LHX3, and LHX4 shows high frequency of PROP1 mutations in patients with familial forms of combined pituitary hormone deficiency. Arq Bras. Endocrinol. Metabol. 51, 1097–1103 (2007).

    Article  PubMed  Google Scholar 

  117. Flück, C. et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg→Cys at codon 120 (R120C). J. Clin. Endocrinol. Metab. 83, 3727–3734 (1998).

    PubMed  Google Scholar 

  118. Mendonca, B. B. et al. Longitudinal hormonal and pituitary imaging changes in two females with combined pituitary hormone deficiency due to deletion of A301, G302 in the PROP1 gene. J. Clin. Endocrinol. Metab. 84, 942–945 (1999).

    CAS  PubMed  Google Scholar 

  119. Agarwal, G., Bhatia, V., Cook, S. & Thomas, P. Q. Adrenocorticotropin deficiency in combined pituitary hormone deficiency patients homozygous for a novel PROP1 deletion. J. Clin. Endocrinol. Metab. 85, 4556–4561 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Böttner, A. et al. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: a longitudinal analysis. J. Clin. Endocrinol. Metab. 89, 5256–5265 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Fofanova, O. V. et al. A mutational hot spot in the Prop-1 gene in Russian children with combined pituitary hormone deficiency. Pituitary 1, 45–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Kelberman, D. et al. Molecular analysis of novel PROP1 mutations associated with combined pituitary hormone deficiency (CPHD). Clin. Endocrinol. (Oxf.) 70, 96–103 (2009).

    Article  CAS  Google Scholar 

  123. Zhang, H., Wang, Y., Han, L., Gu, X. & Shi, D. A large deletion of PROP1gene in patients with combined pituitary hormone deficiency from two unrelated Chinese pedigrees. Horm. Res. Paediatr. 74, 98–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Vieira, T. C. et al. Familial combined pituitary hormone deficiency due to a novel mutation R99Q in the hot spot region of Prophet of Pit-1 presenting as constitutional growth delay. J. Clin. Endocrinol. Metab. 88, 38–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Riepe, F. G. et al. Longitudinal imaging reveals pituitary enlargement preceding hypoplasia in two brothers with combined pituitary hormone deficiency attributable to PROP1 mutation. J. Clin. Endocrinol. Metab. 86, 4353–4357 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Asteria, C., Oliveira, J. H., Abucham, J. & Beck-Peccoz, P. Central hypocortisolism as part of combined pituitary hormone deficiency due to mutations of PROP-1 gene. Eur. J. Endocrinol. 143, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Lazar, L., Gat-Yablonski, G., Kornreich, L., Pertzelan, A. & Phillip, M. PROP-1 gene mutation (R120C) causing combined pituitary hormone deficiencies with variable clinical course in eight siblings of one Jewish Moroccan family. Horm. Res. 60, 227–231 (2003).

    CAS  PubMed  Google Scholar 

  128. Maghnie, M., Ghirardello, S. & Genovese, E. Magnetic resonance imaging of the hypothalamus–pituitary unit in children suspected of hypopituitarism: who, how and when to investigate. J. Endocrinol. Invest. 27, 496–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Voutetakis, A. et al. Prolonged jaundice and hypothyroidism as the presenting symptoms in a neonate with a novel Prop1 gene mutation (Q83X). Eur. J. Endocrinol. 150, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Nascif, S. O., Vieira, T. C., Ramos-Dias, J. C., Lengyel, A. M. & Abucham, J. Waxing and waning of a pituitary mass in a young woman with combined pituitary hormone deficiency (CPHD) due to a PROP-1 mutation. Pituitary 9, 47–52 (2006).

    Article  PubMed  Google Scholar 

  131. Ward, R. D. et al. Role of PROP1 in pituitary gland growth. Mol. Endocrinol. 19, 698–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Brinkmeier, M. L. et al. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 93, 449–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ben-Jonathan, N., LaPensee, C. R. & LaPensee, E. W. What can we learn from rodents about prolactin in humans? Endocr. Rev. 29, 1–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Soares, M. J. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2, 51 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dewan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Gurnett, C. A. et al. Two novel point mutations in the long-range SHH enhancer in three families with triphalangeal thumb and preaxial polydactyly. Am. J. Med. Genet. A 143, 27–32 (2007).

    Article  CAS  Google Scholar 

  137. Ohno, K., Sadeh, M., Blatt, I., Brengman, J. M. & Engel, A. G. E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum. Mol. Genet. 12, 739–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, Z., Florez, S., Gutierrez-Hartmann, A., Martin, J. F. & Amendt, B. A. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J. Biol. Chem. 285, 34718–34728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Scheithauer, B. W. et al. The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin. Proc. 65, 461–474 (1990).

    Article  CAS  PubMed  Google Scholar 

  142. Vankelecom, H. Pituitary stem/progenitor cells: embryonic players in the adult gland? Eur. J. Neurosci. 32, 2063–2081 (2010).

    Article  PubMed  Google Scholar 

  143. Chen, J. et al. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27, 1182–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Chen, J. et al. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146, 3985–3998 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Galichet, C., Lovell-Badge, R. & Rizzoti, K. Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland. Plos ONE 5, e11443 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia-Lavandeira, M. et al. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. Plos ONE 4, e4815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nasonkin, I. O. et al. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Hum. Mol. Genet. 13, 2727–2735 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Bonnefont, X. et al. Revealing the large-scale network organization of growth hormone-secreting cells. Proc. Natl Acad. Sci. USA 102, 16880–16885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chauvet, N. et al. Characterization of adherens junction protein expression and localization in pituitary cell networks. J. Endocrinol. 202, 375–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Elliott, J., Maltby, E. L. & Reynolds, B. A case of deletion 14(q22.1→q22.3) associated with anophthalmia and pituitary abnormalities. J. Med. Genet. 30, 251–252 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18, 147–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Alarid, E. T., Windle, J. J., Whyte, D. B. & Mellon, P. L. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 122, 3319–3329 (1996).

    CAS  PubMed  Google Scholar 

  153. Sizova, D., Ho, Y., Cooke, N. E. & Liebhaber, S. A. Research resource: T-antigen transformation of pituitary cells captures three novel cell lines in the Pit-1 lineage. Mol. Endocrinol. 24, 2232–2240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, J. et al. Tbx19, a tissue-selective regulator of POMC gene expression. Proc. Natl Acad. Sci. USA 98, 8674–8679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Demarco, I. A., Voss, T. C., Booker, C. F. & Day, R. N. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus. Mol. Cell Biol. 26, 8087–8098 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work is not cited owing to space constraints. Research in S. J. Rhodes' laboratory is supported by NIH grant RO1 HD42024; K. L. Prince is supported by NIH grant F32 HD068113.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Simon J. Rhodes.

Ethics declarations

Competing interests

E. C. Walvoord declares associations with the following companies: Eli Lilly (grant/research support), Novo Nordisk (speakers bureau). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prince, K., Walvoord, E. & Rhodes, S. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 7, 727–737 (2011). https://doi.org/10.1038/nrendo.2011.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing