Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AGE restriction in diabetes mellitus: a paradigm shift

Abstract

Persistently elevated oxidative stress and inflammation precede or occur during the development of type 1 or type 2 diabetes mellitus and precipitate devastating complications. Given the rapidly increasing incidence of diabetes mellitus and obesity in the space of a few decades, new genetic mutations are unlikely to be the cause, instead pointing to environmental initiators. A hallmark of contemporary culture is a preference for thermally processed foods, replete with pro-oxidant advanced glycation endproducts (AGEs). These molecules are appetite-increasing and, thus, efficient enhancers of overnutrition (which promotes obesity) and oxidant overload (which promotes inflammation). Studies of genetic and nongenetic animal models of diabetes mellitus suggest that suppression of host defenses, under sustained pressure from food-derived AGEs, may potentially shift homeostasis towards a higher basal level of oxidative stress, inflammation and injury of both insulin-producing and insulin-responsive cells. This sequence promotes both types of diabetes mellitus. Reducing basal oxidative stress by AGE restriction in mice, without energy or nutrient change, reinstates host defenses, alleviates inflammation, prevents diabetes mellitus, vascular and renal complications and extends normal lifespan. Studies in healthy humans and in those with diabetes mellitus show that consumption of high amounts of food-related AGEs is a determinant of insulin resistance and inflammation and that AGE restriction improves both. This Review focuses on AGEs as novel initiators of oxidative stress that precedes, rather than results from, diabetes mellitus. Therapeutic gains from AGE restriction constitute a paradigm shift.

Key Points

  • The current epidemics of diabetes mellitus and aging-related diseases may largely be due to environmental factors, as industrial and societal changes have led to the production and consumption of foods rich in advanced glycation endproducts (AGEs)

  • The sustained influx of AGEs leads to suppression of host defenses and a surplus of intracellular reactive oxygen species, which can shift basal oxidative stress and lead to inflammation and obesity

  • The combination of these processes can simultaneously cause β-cell dysfunction, impaired insulin secretion and insulin resistance, as well as diabetic complications

  • Restriction of food-related AGEs helps reduce basal oxidative stress, restore host defenses and prevents or improves type 1 and type 2 diabetes mellitus in mice, regardless of genetic susceptibility

  • AGE restriction in humans is emerging as a promising, cost-effective, broadly applicable intervention

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detrimental effects of overnutrition.
Figure 2: Synergism between AGER1 and SIRT1.
Figure 3: Excessive AGEs impair insulin sensitivity in insulin-target tissues.
Figure 4: AGEs impair insulin secretion in pancreatic islet β cells.

Similar content being viewed by others

References

  1. Amos, A. F., McCarty, D. J. & Zimmet, P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet. Med. 14 (Suppl. 5), S1–S85 (1997).

    PubMed  Google Scholar 

  2. Dandona, P., Aljada, A., Chaudhuri, A., Mohanty, P. & Garg, R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111, 1448–1454 (2005).

    Article  PubMed  Google Scholar 

  3. Ford, E. S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care, 28, 1769–1778 (2005).

    Article  PubMed  Google Scholar 

  4. Fox, C. S. et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 113, 2914–2918 (2006).

    Article  PubMed  Google Scholar 

  5. Harjutsalo, V., Sjöberg, L. & Tuomilehto, J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371, 1777–1782 (2008).

    Article  PubMed  Google Scholar 

  6. Grundy, S. M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 28, 629–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bashan, N., Kovsan, J., Kachko, I., Ovadia, H. & Rudich, A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol. Rev. 89, 27–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, T. Y. et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 371, 736–743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. ACCORD Study Group. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1575–1585 (2010).

  10. [No authors listed] Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N. Engl. J. Med., 342, 381–389 (2000).

  11. Skyler, J. S. et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J. Am. Coll. Cardiol. 53, 298–304 (2009).

    Article  PubMed  Google Scholar 

  12. Parthasarathy, S., Khan-Merchant, N., Penumetcha, M., Khan, B. V. & Santanam, N. Did the antioxidant trials fail to validate the oxidation hypothesis? Curr. Atheroscler. Rep. 3, 392–398 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ruderman, N., Chisholm, D., Pi-Sunyer, X. & Schneider, S. The metabolically obese, normal-weight individual revisited. Diabetes 47, 699–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wildman, R. P. et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch. Intern. Med. 168, 1617–1624 (2008).

    Article  PubMed  Google Scholar 

  15. Knip, M. et al. Environmental triggers and determinants of type 1 diabetes. Diabetes 54 (Suppl. 2), S125–S136 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H. & Reusch, J. E. Diabetes and advanced glycoxidation end products. Diabetes Care 29, 1420–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Vlassara, H. & Striker, G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr. Diab. Rep. 7, 235–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wentworth, J. M., Fourlanos, S. & Harrison, L. C. Reappraising the stereotypes of diabetes in the modern diabetogenic environment. Nat. Rev. Endocrinol. 5, 483–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Koschinsky, T. et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl Acad. Sci. USA 94, 6474–6479 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uribarri, J. et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A Biol. Sci. Med. Sci. 62, 427–433 (2007).

    Article  PubMed  Google Scholar 

  21. Vlassara, H. et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab. 94, 4483–4491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brands, C. M., Alink, G. M., van Boekel, M. A. & Jongen, W. M. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction. J. Agric. Food Chem. 48, 2271–2275 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Cai, W. et al. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 8, 337–346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finot, P. A. Historical perspective of the Maillard reaction in food science. Ann. NY Acad. Sci. 1043, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Finot, P. A. The absorption and metabolism of modified amino acids in processed foods. J. AOAC Int. 88, 894–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ames, J. M. Determination of N epsilon-(carboxymethyl)lysine in foods and related systems. Ann. NY Acad. Sci. 1126, 20–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Pouillart, P. et al. Strategy for the study of the health impact of dietary Maillard products in clinical studies: the example of the ICARE clinical study on healthy adults. Ann. NY Acad. Sci. 1126, 173–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Birlouez-Aragon, I. et al. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am. J. Clin. Nutr. 91, 1220–1226 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Vlassara, H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab. Res. Rev. 17, 436–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, Z. et al. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology 150, 2569–2576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu, M. X. et al. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 271, 9982–9986 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Schalkwijk, C. G., Stehouwer, C. D. & van Hinsbergh, V. W. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab. Res. Rev. 20, 369–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W. & Metz, T. O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J. Proteome Res. 8, 754–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baynes, J. W. & Thorpe, S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Monnier, V. M. et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48, 870–880 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Bucala, R., Makita, Z., Koschinsky, T., Cerami, A. & Vlassara, H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc. Natl Acad. Sci. USA 90, 6434–6438 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thornalley, P. J. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 27, 565–573 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Rabbani, N. & Thornalley, P. J. The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease. Ann. NY Acad. Sci. 1126, 124–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Maillard, L. C. Action des acides anines sur les sucres: formation des melanoidines par voie methodique. Crit. Rev. Acad. Sci. 154, 1653–1671 (1912).

    Google Scholar 

  41. Uribarri, J. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet Assoc. 110, 911–916 (2009).

    Article  Google Scholar 

  42. Goldberg, T. et al. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet Assoc. 104, 1287–1291 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. O'Brien, J. & Morrissey, P. A. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 28, 211–248 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Makita, Z., Vlassara, H., Cerami, A. & Bucala, R. Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267, 5133–5138 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Mitsuhashi, T., Vlassara, H., Founds, H. W. & Li, Y. M. Standardizing the immunological measurement of advanced glycation endproducts using normal human serum. J. Immunol. Methods 207, 79–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Semba, R. D., Nicklett, E. J. & Ferrucci, L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. A Biol. Sci. Med. Sci. 65, 963–975 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Kilhovd, B. K. et al. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia 50, 1409–1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bucala, R. et al. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc. Natl Acad. Sci. USA 91, 9441–9445 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Januszewski, A. S., Alderson, N. L., Jenkins, A. J., Thorpe, S. R. & Baynes, J. W. Chemical modification of proteins during peroxidation of phospholipids. J. Lipid Res. 46, 1440–1449 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Stitt, A. W. et al. Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationships to tissue AGEs. Mol. Med. 3, 617–627 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Staprans, I., Rapp, J. H., Pan, X. M. & Feingold, K. R. Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats. J. Lipid Res. 37, 420–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Staprans, I., Pan, X. M., Rapp, J. H. & Feingold, K. R. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J. Lipid Res. 44, 705–715 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Cai, W. et al. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation 110, 285–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hodgkinson, C. P., Laxton, R. C., Patel, K. & Ye, S. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 2275–2281 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Nathan, C. Epidemic inflammation: pondering obesity. Mol. Med. 14, 485–492 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adachi, T., Inoue, M., Hara, H., Maehata, E. & Suzuki, S. Relationship of plasma extracellular-superoxide dismutase level with insulin resistance in type 2 diabetic patients. J. Endocrinol. 181, 413–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Shinohara, M. et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101, 1142–1147 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson, M. M. & Heinecke, J. W. Production of Nɛ-(carboxymethyl)lysine is impaired in mice deficient in NADPH oxidase: a role for phagocyte-derived oxidants in the formation of advanced glycation end products during inflammation. Diabetes 52, 2137–2143 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Thornalley, P. J. Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31, 1343–1348 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Makita, Z. et al. Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl. J. Med. 325, 836–842 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Makita, Z. et al. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343, 1519–1522 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Skolnik, E. Y. et al. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J. Exp. Med. 174, 931–939 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. He, C. J. et al. Differential expression of renal AGE-receptor genes in NOD mouse kidneys: possible role in non-obese diabetic renal disease. Kidney Int. 58, 1931–1940 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Sindhu, R. K., Koo, J. R., Roberts, C. K. & Vaziri, N. D. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin. Exp. Hypertens. 26, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. van Boekel, M. A. Formation of flavour compounds in the Maillard reaction. Biotechnol. Adv. 24, 230–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Zamora, R. & Hidalgo, F. J. Coordinate contribution of lipiod oxidation and maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45, 49–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Tessier, F. J. & Niquet, C. The metabolic, nutritional and toxicological consequences of ingested dietary Maillard reaction products: a literature review [French]. J. Soc. Biol. 201, 199–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. He, C., Sabol, J., Mitsuhashi, T. & Vlassara, H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48, 1308–1315 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Cai, W. et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am. J. Pathol. 170, 1893–1902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cai, W. et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am. J. Pathol. 173, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, R. Y. et al. Lowering of dietary advanced glycation endproducts (AGE) reduces neointimal formation after arterial injury in genetically hypercholesterolemic mice. Atherosclerosis 163, 303–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Zheng, F. et al. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab. Res. Rev. 18, 224–237 (2002).

    Article  PubMed  Google Scholar 

  76. Lin, R. Y. et al. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 168, 213–220 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, A. M. & Stern, D. M. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front. Biosci. 6, D1151–D1160 (2001).

    CAS  PubMed  Google Scholar 

  78. Coughlan, M. T. et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol. 20, 742–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu, C. et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl Acad. Sci. USA 101, 11767–11772 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cai, W., He, J. C., Zhu, L., Lu, C. & Vlassara, H. Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc. Natl Acad. Sci. USA 103, 13801–13806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Torreggianni, M. et al. Advanced glycation end product receptor-1 transgenic mice are resistant to inflammation, oxidative stress, and post-injury intimal hyperplasia. Am. J. Pathol. 175, 1722–1732 (2009).

    Article  Google Scholar 

  82. Liang, F., Kume, S. & Koya, D. SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5, 367–373 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Yoshizaki, T. et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell Biol. 29, 1363–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. de Kreutzenberg, S. V. et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59, 1006–1015 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. He, C. J., Koschinsky, T., Buenting, C. & Vlassara, H. Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE. Mol. Med. 7, 159–168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Menghini, R. et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524–1532 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Cai, W. et al. AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am. J. Physiol. Cell Physiol. 294, C145–C152 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Urribarri, J. et al. Improved insulin resistance in human type 2 diabetes by AGE-restriction; potential role of AGER1 and SIRT1. Diabetes doi: 10.2337/DC11-0091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vlassara, H., Brownlee, M. & Cerami, A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J. Exp. Med. 164, 1301–1309 (1986).

    Article  CAS  PubMed  Google Scholar 

  90. Vlassara, H., Brownlee, M. & Cerami, A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc. Natl Acad. Sci. USA 82, 5588–5592 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamagata, T. et al. Genome organization of human 48-kDa oligosaccharyltransferase (DDOST). Genomics 45, 535–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Silberstein, S., Kelleher, D. J. & Gilmore, R. The 48-kDa subunit of the mammalian oligosaccharyltransferase complex is homologous to the essential yeast protein WBP1. J. Biol. Chem. 267, 23658–23663 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Goldin, A., Beckman, J. A., Schmidt, A. M. & Creager, M. A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Kislinger, T. et al. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 21, 905–910 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Ohgami, N. et al. CD36, a member of class B scavenger receptor family, is a receptor for advanced glycation end products. Ann. NY Acad. Sci. 947, 350–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Kislinger, T. et al. Nɛ-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 274, 31740–31749 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Cai, W. et al. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am. J. Physiol. Cell Physiol. 298, C624–C634 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wautier, M. P. et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280, E685–E694 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Basbaum, C., Li, D., Gensch, E., Gallup, M. & Lemjabbar, H. Mechanisms by which gram-positive bacteria and tobacco smoke stimulate mucin induction through the epidermal growth factor receptor (EGFR). Novartis Found. Symp. 248, 171–6; discussion 176–180, 277–282 (2002).

    CAS  PubMed  Google Scholar 

  100. Fukuhara, S., Chikumi, H. & Gutkind, J. S. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20, 1661–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Napoli, C. et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc. Natl Acad. Sci. USA 100, 2112–2116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Li, Y. M., Tan, A. X. & Vlassara, H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat. Med. 1, 1057–1061 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Gao, X., Zhang, H., Schmidt, A. M. & Zhang, C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 295, H491–H498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deane, R. et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Bierhaus, A. et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes 50, 2792–2808 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Basta, G., Schmidt, A. M. & De Caterina, R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 63, 582–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Branco-Madeira, F. & Lambrecht, B. N. High mobility group box-1 recognition: the beginning of a RAGEless era? EMBO Mol. Med. 2, 193–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. & Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Qin, Y. H. et al. HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J. Immunol. 183, 6244–6250 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Yao, D. & Brownlee, M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59, 249–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, Y. et al. sRAGE induces human monocyte survival and differentiation. J. Immunol. 185, 1822–1835 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. van Beijnum, J. R., Buurman, W. A. & Griffioen, A. W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11, 91–99 (2008).

    Article  PubMed  CAS  Google Scholar 

  114. Sourris, K. C. et al. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia 53, 2442–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tikellis, C. et al. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am. J. Physiol. Endocrinol. Metab. 295, E323–E330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vlassara, H., Brownlee, M. & Cerami, A. Specific macrophage receptor activity for advanced glycosylation end products inversely correlates with insulin levels in vivo. Diabetes 37, 456–461 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Mitsuhashi, T., Li, Y. M., Fishbane, S. & Vlassara, H. Depletion of reactive advanced glycation endproducts from diabetic uremic sera using a lysozyme-linked matrix. J. Clin. Invest. 100, 847–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vlassara, H. et al. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int. Suppl. 114, S3–S11 (2009).

    Article  CAS  Google Scholar 

  119. Vlassara, H. et al. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc. Natl Acad. Sci. USA 91, 11704–11708 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    Article  PubMed  Google Scholar 

  121. Wu, J. et al. Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am. J. Pathol. 176, 2163–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vlassara, H. et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl Acad. Sci. USA 99, 15596–15601 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vlassara, H., Fuh, H., Makita, Z., Krungkrai, S., Cerami, A. & Bucala, R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc. Natl Acad. Sci. USA 89, 12043–12047 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Onorato, J. M., Jenkins, A. J., Thorpe, S. R. & Baynes, J. W. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J. Biol. Chem. 275, 21177–21184 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Metz, T. O., A. N., Chahich, M. E., Thorpe, S. R. & Baynes, J. W. Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J. Biol. Chem. 278, 42012–42019 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Wolffenbuttel, B. H. et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc. Natl Acad. Sci. USA 95, 4630–4634 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Degenhardt, T. P. et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 61, 939–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Hofmann, S. M. et al. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51, 2082–2089 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Peppa, M. et al. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes 52, 1441–1448 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Sandu, O. et al. Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54, 2314–2319 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Odegaard, A. O. & Pereira, M. A. Trans fatty acids, insulin resistance, and type 2 diabetes. Nutr. Rev. 64, 364–372 (2006).

    Article  PubMed  Google Scholar 

  132. Brownlee, M., Cerami, A. & Vlassara, H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318, 1315–1321 (1988).

    Article  CAS  PubMed  Google Scholar 

  133. Stitt, A. W. et al. Impaired retinal angiogenesis in diabetes: role of advanced glycation end products and galectin-3. Diabetes 54, 785–794 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Scherer, P. E. Adipose tissue: from lipid storage to compartment to endocrine organ. Diabetes 55, 1537–1545 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, P., Mariman, E., Renes, J. & Keijer, J. The secretory function of adipocytes in the phyriology of white adipose tissue. J. Cell Physiol. 216, 3–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 357279–357292 (2008).

    Google Scholar 

  139. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Winer, S. et al. Obesity predisposes to Th17 bias. Eur. J. Immunol. 39, 2629–2635 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Vlassara, H., Brownlee, M., Manogue, K. R., Dinarello, C. A. & Pasagian, A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240, 1546–1548 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Kirstein, M. et al. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl Acad. Sci. USA 87, 9010–9014 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, Y. et al. RAGE ligation affects T cell activation and controls T cell differentiation. J. Immunol. 181, 4272–4278 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Imani, F. et al. Advanced glycosylation endproduct-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon gamma: role in tissue remodeling. J. Exp. Med. 178, 2165–2172 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Kinkhabwala, M. et al. A novel addition to the T cell repertory. Cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells. J. Exp. Med. 171, 941–946 (1990).

    Article  CAS  PubMed  Google Scholar 

  148. Feuerer, M., Shen, Y., Littman, D. R., Benoist, C. & Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31, 654–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, A. et al. Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes. Res. 13, 1311–1320 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31 (2006).

    Article  PubMed  CAS  Google Scholar 

  151. Böni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 93, 4065–4074 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Dinarello, C. A., Donath, M. Y. & Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17, 314–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Vlassara, H. et al. Identifying advanced glycation end products as a major source of oxidants in aging: implications for the management and/or prevention of reduced renal function in elderly persons. Semin. Nephrol. 29, 594–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295, 1549–1555 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Dabelea, D. The accelerating epidemic of childhood diabetes. Lancet 373, 1999–2000 (2009).

    Article  PubMed  Google Scholar 

  157. Dabelea, D. et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case–Control Study. Diabetes Care 31, 1422–1426 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Alexander, B. T. & Ojeda, N. B. Prenatal inflammation and the early origins of hypertension. Clin. Exp. Pharmacol. Physiol. 35, 1403–1404 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Ojeda, N. B., Grigore, D. & Alexander, B. T. Developmental programming of hypertension: insight from animal models of nutritional manipulation. Hypertension 52, 44–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Nivoit, P. et al. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52, 1133–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Ling, C. et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51, 615–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ling, C. & Groop, L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718–2725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mericq, V. et al. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care 33, 2232–2237 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Dittrich, R. et al. Concentrations of Nepsilon-carboxymethyllysine in human breast milk, infant formulas, and urine of infants. J. Agric. Food Chem. 54, 6924–6928 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Birlouez-Aragon, I. et al. Assessment of protein glycation markers in infant formulas. Food Chemistry 87, 253–259 (2004).

    Article  CAS  Google Scholar 

  166. Wilkin, T. J. Diabetes: 1 and 2, or one and the same? Progress with the accelerator hypothesis. Pediatr. Diabetes 9, 23–32 (2008).

    Article  PubMed  Google Scholar 

  167. Gale, E. A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Couper, J. J. et al. Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care 32, 94–99 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Semba, R. D., Bandinelli, S., Sun, K., Guralnik, J. M. & Ferrucci, L. Plasma carboxymethyl-lysine, an advanced glycation end product, and all-cause and cardiovascular disease mortality in older community-dwelling adults. J. Am. Geriatr. Soc. 57, 1874–1880 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Semba, R. D., Najjar, S. S., Sun, K., Lakatta, E. G. & Ferrucci, L. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am. J. Hypertens. 22, 74–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Semba, R. D., Fink, J. C., Sun, K., Windham, B. G. & Ferrucci, L. Serum carboxymethyl-lysine, a dominant advanced glycation end product, is associated with chronic kidney disease: the Baltimore longitudinal study of aging. J. Ren. Nutr. 20, 74–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Uribarri, J. et al. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J. Am. Soc. Nephrol. 14, 728–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Uribarri, J. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet Assoc. 110, 911–916 (2009).

    Article  Google Scholar 

  174. Akkarachaneeyakorn, S. et al. Optimization of combined microwave-hot air roasting of malt based on energy consumption and neo-formed contaminants content. J. Food Sci. 75, E201–E207 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Miura, J. et al. Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with type 1 diabetes. J. Diabetes Complications 17, 16–21 (2003).

    Article  PubMed  Google Scholar 

  176. Gul, A., Rahman, M. A., Salim, A. & Simjee, S. U. Advanced glycation end products in senile diabetic and nondiabetic patients with cataract. J. Diabetes Complications 23, 343–348 (2009).

    Article  PubMed  Google Scholar 

  177. Goh, S. Y. & Cooper, M. E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 93, 1143–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work described in this Review was supported in part by MERIT grant AG-23,188, AG-09,453 and DK091231 (H. Vlassara) and RR-00071.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Helen Vlassara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlassara, H., Striker, G. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7, 526–539 (2011). https://doi.org/10.1038/nrendo.2011.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing