Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and future applications of GnRH, kisspeptin and neurokinin B analogues

Abstract

Reproductive hormones affect all stages of life from gamete production, fertilization, fetal development and parturition, neonatal development and puberty through to adulthood and senescence. The reproductive hormone cascade has, therefore, been the target for the development of numerous drugs that modulate its activity at many levels. As the central regulator of the cascade, gonadotropin-releasing hormone (GnRH) agonists and antagonists have found extensive applications in treating a wide range of hormone-dependent diseases, such as precocious puberty, prostate cancer, benign prostatic hyperplasia, endometriosis and uterine fibroids, as well as being an essential component of in vitro fertilization protocols. The neuroendocrine peptides that regulate GnRH neurons, kisspeptin and neurokinin B, have also been identified as therapeutic targets, and novel agonists and antagonists are being developed as modulators of the cascade upstream of GnRH. Here, we review the development and applications of analogues of the major neuroendocrine peptide regulators of the reproductive hormone cascade: GnRH, kisspeptin and neurokinin B.

Key Points

  • The reproductive hormone cascade from the brain to the pituitary, gonads and peripheral tissues provides numerous target points for therapeutic intervention in diseases

  • Hormones in the cascade include the neuropeptides kisspeptin and neurokinin B, which regulate hypothalamic gonadotropin-releasing hormone (GnRH); in turn, GnRH stimulates gonadotropins and downstream sex steroid hormones that affect most tissues

  • Modulation of sex steroid hormone levels in contraception, infertility and hormone-dependent diseases (for example, prostate cancer, endometriosis, uterine fibroids and polycystic ovary syndrome) is achieved through steroid hormone and GnRH analogues

  • Novel, orally active GnRH analogues are providing a new dimension in dose regulation for patients who require partial inhibition of sex steroids

  • Kisspeptin and neurokinin B represent new therapeutic targets; analogues have been developed that herald a new era of subtle regulation of the reproductive hormone cascade

  • The enlarged armamentarium of molecules regulating reproductive hormone levels promises to deliver improved control of reproduction and treatment of diseases that impinge on all stages of the human life span

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The reproductive hormone cascade and therapeutic analogues that target the cascade.
Figure 2: The 3D structure of GnRH.
Figure 3: GnRH agonist and antagonist peptide analogues in clinical practice or in clinical development.
Figure 4: Nonpeptide GnRH antagonists.
Figure 5: Docking of the NMR GnRH structure to the human GnRH-R, in which only the essential elements are shown, to reveal the interactions of GnRH in a folded conformation with the receptor.
Figure 6: Kisspeptin analogues.
Figure 7: Neurokinin B analogues.

Similar content being viewed by others

References

  1. Fink, G. in The Physiology of Reproduction (eds Knobil, E. & Neill, J.) 1349–1377 (Raven Press, New York, 1988).

    Google Scholar 

  2. Seeburg, P. H., Mason, A. J., Stewart, T. A. & Nikolics, K. The mammalian GnRH gene and its pivotal role in reproduction. Recent Prog. Horm. Res. 43, 69–98 (1987).

    CAS  PubMed  Google Scholar 

  3. Millar, R. P. et al. Gonadotropin-releasing hormone receptors. Endocr. Rev. 25, 235–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Millar, R. P. GnRHs and GnRH receptors. Anim. Reprod. Sci. 88, 5–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Navarro, V. M. & Tena-Sempere, M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat. Rev. Endocrinol. 8, 40–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Topaloglu, A. K. et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gianetti, E. et al. TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J. Clin. Endocrinol. Metab. 95, 2857–2867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young, J. et al. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J. Clin. Endocrinol. Metab. 95, 2287–2295 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Terasawa, E. & Fernandez, D. L. Neurobiological mechanisms of the onset of puberty in primates. Endocr. Rev. 22, 111–151 (2001).

    CAS  PubMed  Google Scholar 

  13. Roa, J. & Herbison, A. E. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 153, 5587–5599 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Matsuo, H., Baba, Y., Nair, R. M., Arimura, A. & Schally, A. V. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem. Biophys. Res. Commun. 43, 1334–1339 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Baba, Y., Matsuo, H. & Schally, A. V. Structure of the porcine LH- and FSH-releasing hormone. II. Confirmation of the proposed structure by conventional sequential analyses. Biochem. Biophys. Res. Commun. 44, 459–463 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Schally, A. V. et al. Isolation and properties of the FSH and LH-releasing hormone. Biochem. Biophys. Res. Commun. 43, 393–399 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. King, J. A. & Millar, R. P. Heterogeneity of vertebrate luteinizing hormone-releasing hormone. Science 206, 67–69 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. King, J. A. & Millar, R. P. Structure of chicken hypothalamic luteinizing hormone-releasing hormone. II. Isolation and characterization. J. Biol. Chem. 257, 10729–10732 (1982).

    CAS  PubMed  Google Scholar 

  19. King, J. A. & Millar, R. P. Structure of chicken hypothalamic luteinizing hormone-releasing hormone. I. Structural determination on partially purified material. J. Biol. Chem. 257, 10722–10728 (1982).

    CAS  PubMed  Google Scholar 

  20. Adams, B. A. et al. Six novel gonadotropin-releasing hormones are encoded as triplets on each of two genes in the protochordate, Ciona intestinalis. Endocrinology 144, 1907–1919 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez-Liñan, M., Rubin, B. S. & King, J. C. Examination of guinea pig luteinizing hormone-releasing hormone gene reveals a unique decapeptide and existence of two transcripts in the brain. Endocrinology 138, 4123–4130 (1997).

    Article  PubMed  Google Scholar 

  22. King, J. A. & Millar, R. P. Evolution of gonadotropin-releasing hormones. Trends Endocrinol. Metab. 3, 339–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. King, J. A. & Millar, R. P. Evolutionary aspects of gonadotropin-releasing hormone and its receptor. Cell. Mol. Neurobiol. 15, 5–23 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. King, J. A. & Millar, R. P. in GnRH Neurons: Gene to Behavior (eds Parhar, I. S. & Sakuma, Y.) 51–77 (Brain Shuppan, Tokyo, 1997).

    Google Scholar 

  25. Millar, R. P., King, J. A., Davidson, J. S. & Milton, R. C. Gonadotrophin-releasing hormone--diversity of functions and clinical applications. S. Afr. Med. J. 72, 748–755 (1987).

    CAS  PubMed  Google Scholar 

  26. Millar, R. & King, J. Evolution of gonadotropin-releasing hormone: multiple usage of a peptide. Physiology 3, 49–53 (1988).

    Article  CAS  Google Scholar 

  27. Millar, R. P. et al. Plasticity in the structural and functional evolution of GnRH: a peptide for all seasons. In Proc. Thirteenth International Congress of Comparative Endocrinology (Eds Kawashima, S. & Kikuyama, S.) 15–27 (Monduzzi Editore, Bologna, 1997).

    Google Scholar 

  28. Okubo, K., Suetake, H., Usami, T. & Aida, K. Molecular cloning and tissue-specific expression of a gonadotropin-releasing hormone receptor in the Japanese eel. Gen. Comp. Endocrinol. 119, 181–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Okubo, K., Amano, M., Yoshiura, Y., Suetake, H. & Aida, K. A novel form of gonadotropin-releasing hormone in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun. 276, 298–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sherwood, N. M. & Lovejoy, D. A. The origin of the mammalian form of GnRH in primitive fishes. Fish Physiol. Biochem. 7, 85–93 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Sherwood, N. M., Lovejoy, D. A. & Coe, I. R. Origin of mammalian gonadotropin-releasing hormones. Endocr. Rev. 14, 241–254 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Yoo, M. S. et al. Molecular cloning, distribution and pharmacological characterization of a novel gonadotropin-releasing hormone ([Trp8] GnRH) in frog brain. Mol. Cell. Endocrinol. 164, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Roch, G. J., Busby, E. R. & Sherwood, N. M. Evolution of GnRH: diving deeper. Gen. Comp. Endocrinol. 171, 1–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sherwood, N. The GnRH family of peptides. Trends Neurosci. 10, 129–132 (1987).

    Article  CAS  Google Scholar 

  35. Flanagan, C. A. et al. Glutamate 301 of the mouse gonadotropin-releasing hormone receptor confers specificity for arginine 8 of mammalian gonadotropin-releasing hormone. J. Biol. Chem. 269, 22636–22641 (1994).

    CAS  PubMed  Google Scholar 

  36. Barran, P. E. et al. Evolution of constrained gonadotropin-releasing hormone ligand conformation and receptor selectivity. J. Biol. Chem. 280, 38569–38575 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Pfleger, K. D., Bogerd, J. & Millar, R. P. Conformational constraint of mammalian, chicken, and salmon GnRHs, but not GnRH II, enhances binding at mammalian and nonmammalian receptors: evidence for preconfiguration of GnRH II. Mol. Endocrinol. 16, 2155–2162 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Karten, M. J. & Rivier, J. E. Gonadotropin-releasing hormone analog design. Structure-function studies toward the development of agonists and antagonists: rationale and perspective. Endocr. Rev. 7, 44–66 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Sealfon, S. C., Weinstein, H. & Millar, R. P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 18, 180–205 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Heitman, L. H. & Ijzerman, A. P. G protein-coupled receptors of the hypothalamic–pituitary–gonadal axis: a case for Gnrh, LH, FSH, and GPR54 receptor ligands. Med. Res. Rev. 28, 975–1011 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Betz, S. F., Reinhart, G. J., Lio, F. M., Chen, C. & Struthers, R. S. Overlapping, nonidentical binding sites of different classes of nonpeptide antagonists for the human gonadotropin-releasing hormone receptor. J. Med. Chem. 49, 637–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Cui, J. et al. Identification of Phe313 of the gonadotropin-releasing hormone (GnRH) receptor as a site critical for the binding of nonpeptide GnRH antagonists. Mol. Endocrinol. 14, 671–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, C. et al. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4 -methyl-2, 6-dioxo-3, 6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor. J. Med. Chem. 51, 7478–7485 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Miwa, K. et al. Discovery of 1-{4-[1-(2, 6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2, 4-dioxo-1, 2, 3, 4-tetrahydrothieno[2, 3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a potent, orally active, non-peptide antagonist of the human gonadotropin-releasing hormone receptor. J. Med. Chem. 54, 4998–5012 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Struthers, R. S. et al. Suppression of gonadotropins and estradiol in premenopausal women by oral administration of the nonpeptide gonadotropin-releasing hormone antagonist elagolix. J. Clin. Endocrinol. Metab. 94, 545–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Finch, A. R., Sedgley, K. R., Caunt, C. J. & McArdle, C. A. Plasma membrane expression of GnRH receptors: regulation by antagonists in breast, prostate, and gonadotrope cell lines. J. Endocrinol. 196, 353–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Conn, P. M. & Ulloa-Aguirre, A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv. Pharmacol. 62, 109–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Conn, P. M. & Ulloa-Aguirre, A. Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends Endocrinol. Metab. 21, 190–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Tsutsumi, M. Cloning and functional expression of a mouse gonadotropin-releasing hormone receptor. Mol. Endocrinol. 6, 1163–1169 (1992).

    CAS  PubMed  Google Scholar 

  50. Pawson, A. J. et al. Mammalian type I gonadotropin-releasing hormone receptors undergo slow, constitutive, agonist-independent internalization. Endocrinology 149, 1415–1422 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lahlou, N. et al. Gonadotropin and alpha-subunit secretion during long term pituitary suppression by D-Trp6-luteinizing hormone-releasing hormone microcapsules as treatment of precocious puberty. J. Clin. Endocrinol. Metab. 65, 946–953 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Millar, R. P., Pawson, A. J., Morgan, K., Rissman, E. F. & Lu, Z. L. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front. Neuroendocrinol. 29, 17–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Casper, R. F. Clinical uses of gonadotropin-releasing hormone analogues. CMAJ 144, 153–158 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Conn, P. M. & Crowley, W. F. Jr. Gonadotropin-releasing hormone and its analogues. N. Engl. J. Med. 324, 93–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Barbieri, R. L. Clinical applications of GnRH and its analogues Trends Endocrinol. Metab. 3, 30–34 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Moghissi, K. S. Clinical applications of gonadotropin-releasing hormones in reproductive disorders. Endocrinol. Metab. Clin. North Am. 21, 125–140 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Filicori, M. Gonadotrophin-releasing hormone agonists. A guide to use and selection. Drugs 48, 41–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Emons, G. & Schally, A. V. The use of luteinizing hormone releasing hormone agonists and antagonists in gynaecological cancers. Hum. Reprod. 9, 1364–1379 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Rivier, J. E. et al. New effective gonadotropin releasing hormone antagonists with minimal potency for histamine release in vitro. J. Med. Chem. 29, 1846–1851 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Schlegel, P. N. et al. Effective long-term androgen suppression in men with prostate cancer using a hydrogel implant with the GnRH agonist histrelin. Urology 58, 578–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Barbieri, R. L. Hormone treatment of endometriosis: the estrogen threshold hypothesis. Am. J. Obstet. Gynecol. 166, 740–745 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Surrey, E. S. Add-back therapy and gonadotropin-releasing hormone agonists in the treatment of patients with endometriosis: can a consensus be reached? Add-Back Consensus Working Group. Fertil. Steril. 71, 420–424 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Franke, H. R., van de Weijer, P. H., Pennings, T. M. & van der Mooren, M. J. Gonadotropin-releasing hormone agonist plus “add-back” hormone replacement therapy for treatment of endometriosis: a prospective, randomized, placebo-controlled, double-blind trial. Fertil. Steril. 74, 534–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Ratcliffe, K. E., Fraser, H. M., Sellar, R., Rivier, J. & Millar, R. P. Bifunctional gonadotropin-releasing hormone antagonist-progesterone analogs with increased efficacy and duration of action. Endocrinology 147, 571–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Akaza, H. Future prospects for luteinizing hormone-releasing hormone analogues in prostate cancer treatment. Pharmacology 85, 110–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Porter, R. N., Smith, W., Craft, I. L., Abdulwahid, N. A. & Jacobs, H. S. Induction of ovulation for in-vitro fertilisation using buserelin and gonadotropins. Lancet 2, 1284–1285 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Kiesel, L. A., Rody, A., Greb, R. R. & Szilágyi, A. Clinical use of GnRH analogues. Clin. Endocrinol. 56, 677–687 (2002).

    Article  CAS  Google Scholar 

  68. Franks, S. Polycystic ovary syndrome. N. Engl. J. Med. 333, 853–861 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Lethaby, A., Vollenhoven, B. & Sowter, M. Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids. Cochrane Database of Systematic Reviews Issue 2. Art. No.: CD000547 doi:10.1002/14651858.CD000547 (2001).

  70. Colacurci, N. et al. The use of GnRH agonists depot for the treatment of dysfunctional uterine bleeding. Acta Eur. Fertil. 22, 229–231 (1991).

    CAS  PubMed  Google Scholar 

  71. Klijn, J. G. M. et al. Combined treatment with buserelin and tamoxifen in premenopausal metastatic breast cancer: a randomized study. J. Natl Cancer Inst. 92, 903–911 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. So, W.-K., Cheng, J.-C., Poon, S.-L. & Leung, P. C. K. Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J. 275, 5496–5511 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, P. H., Chao, H. T. & Lee, W. L. Use of a long-acting gonadotropin-releasing hormone agonist for treatment of steroid cell tumors of the ovary. Fertil. Steril. 69, 353–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Covens, A. et al. A phase II study of leuprolide in advanced/recurrent endometrial cancer. Gynecol. Oncol. 64, 126–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Dockray, G. J. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp. Physiol. 89, 229–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Ohtaki, T. et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Roseweir, A. K. & Millar, R. P. The role of kisspeptin in the control of gonadotrophin secretion. Hum. Reprod. Update 15, 203–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Kotani, M. et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276, 34631–34636 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mikkelsen, J. D., Bentsen, A. H., Ansel, L., Simonneaux, V. & Juul, A. Comparison of the effects of peripherally administered kisspeptins. Regul. Pept. 152, 95–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Tovar, S. et al. Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology 147, 2696–2704 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Thompson, E. L. et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J. Neuroendocrinol. 16, 850–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Navarro, V. M. et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 146, 1689–1697 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Navarro, V. M. et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146, 156–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Plant, T. M., Ramaswamy, S. & Dipietro, M. J. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 147, 1007–1013 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Shahab, M. et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc. Natl Acad. Sci. USA 102, 2129–2134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Irwig, M. S. et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80, 264–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Messager, S. et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl Acad. Sci. USA 102, 1761–1766 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dhillo, W. S. et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J. Clin. Endocrinol. Metab. 90, 6609–6615 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. George, J. T., Millar, R. P. & Anderson, R. A. Hypothesis: kisspeptin mediates male hypogonadism in obesity and type 2 diabetes. Neuroendocrinology 91, 302–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. George, J. T. et al. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J. Clin. Endocrinol. Metab. 96, E1228–E1236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dhillo, W. S. et al. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J. Clin. Endocrinol. Metab. 92, 3958–3966 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Estrada, K. M., Clay, C. M., Pompolo, S., Smith, J. T. & Clarke, I. J. Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J. Neuroendocrinol. 18, 806–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Franceschini, I. et al. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci. Lett. 401, 225–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, J. T., Cunningham, M. J., Rissman, E. F., Clifton, D. K. & Steiner, R. A. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146, 3686–3692 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Smith, J. T. et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146, 2976–2984 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Adachi, S. et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J. Reprod. Dev. 53, 367–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Clarkson, J. & Herbison, A. E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817–5825 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Pompolo, S., Pereira, A., Estrada, K. M. & Clarke, I. J. Colocalization of kisspeptin and gonadotropin-releasing hormone in the ovine brain. Endocrinology 147, 804–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ramaswamy, S., Guerriero, K. A., Gibbs, R. B. & Plant, T. M. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 149, 4387–4395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tena-Sempere, M. KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology 83, 275–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Roa, J., Aguilar, E., Dieguez, C., Pinilla, L. & Tena-Sempere, M. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front. Neuroendocrinol. 29, 48–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Smith, J. T., Acohido, B. V., Clifton, D. K. & Steiner, R. A. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 18, 298–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Donato, J. Jr. et al. Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368 (2011).

    Article  PubMed  Google Scholar 

  104. Castellano, J. M. et al. Alterations in hypothalamic KiSS-1 system in experimental diabetes: early changes and functional consequences. Endocrinology 150, 784–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Castellano, J. M. et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 146, 3917–3925 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P. & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Oakley, A. E., Clifton, D. K. & Steiner, R. A. Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Orsini, M. J. et al. Metastin (KiSS-1) mimetics identified from peptide structure-activity relationship-derived pharmacophores and directed small molecule database screening. J. Med. Chem. 50, 462–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Gutierrez-Pascual, E. et al. In vivo and in vitro structure-activity relationships and structural conformation of kisspeptin-10-related peptides. Mol. Pharmacol. 76, 58–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Roseweir, A. K. et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J. Neurosci. 29, 3920–3929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Millar, R. P. et al. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res. 1364, 81–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Asami, T. & Nishizawa, N. Metastin derivatives and use thereof. US Patent 7,960,348 B2 (2011).

  113. Kitada, C., Asami, T. & Nishizawa, N. Metastin derivatives and use thereof. US Patent 7,625,869 (2009).

  114. Matsui, H. et al. Chronic administration of the metastin/kisspeptin analog KISS1–305 or the investigational agent TAK-448 suppresses hypothalamic pituitary gonadal function and depletes plasma testosterone in adult male rats. Endocrinology 153, 5297–5308 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, X. et al. Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J. Neurosci. 31, 2421–2430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kinoshita, M. et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146, 4431–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Pineda, R. et al. Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 151, 722–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Kobayashi, T. et al. Synthesis and structure-activity relationships of 2-acylamino-4, 6-diphenylpyridine derivatives as novel antagonists of GPR54. Bioorg. Med. Chem. 18, 3841–3859 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Kobayashi, T. et al. 2-acylamino-4, 6-diphenylpyridine derivatives as novel GPR54 antagonists with good brain exposure and in vivo efficacy for plasma LH level in male rats. Bioorg. Med. Chem. 18, 5157–5171 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Guerriero, K. A., Keen, K. L., Millar, R. P. & Terasawa, E. Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153, 825–836 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Li, X. F. et al. Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS ONE 4, e8334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith, J. T. et al. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152, 1001–1012 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Jayasena, C. N. et al. Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. J. Clin. Endocrinol. Metab. 94, 4315–4323 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. George, J. T., Anderson, R. A. & Millar, R. P. Kisspeptin-10 stimulation of gonadotrophin secretion in women is modulated by sex steroid feedback. Hum. Reprod. 27, 3552–3559 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. George, J. T., Veldhuis, J. D., Tena-Sempere, M., Millar, R. P. & Anderson, R. A. Exploring the pathophysiology of hypogonadism in men with type 2 diabetes: Kisspeptin-10 stimulates serum testosterone and LH secretion in men with type 2 diabetes and mild biochemical hypogonadism. Clin. Endocrinol. (Oxf.) 79, 100–104 (2013).

    Article  CAS  Google Scholar 

  126. Durnerin, C. I. et al. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation. Hum. Reprod. 23, 421–426 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Drakakis, P. et al. Early hCG addition to rFSH for ovarian stimulation in IVF provides better results and the cDNA copies of the hCG receptor may be an indicator of successful stimulation. Reprod. Biol. Endocrinol. 7, 110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kung, T. T. et al. Tachykinin NK3-receptor deficiency does not inhibit pulmonary eosinophilia in allergic mice. Pharmacol. Res. 50, 611–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Yang, J. J., Caligioni, C. S., Chan, Y. M. & Seminara, S. B. Uncovering novel reproductive defects in neurokinin B receptor null mice: closing the gap between mice and men. Endocrinology 153, 1498–1508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Navarro, V. M. New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front. Endocrinol. 3, 48 (2012).

    Article  Google Scholar 

  131. Ramaswamy, S., Seminara, S. B. & Plant, T. M. Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology 94, 237–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wakabayashi, Y. et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J. Neurosci. 30, 3124–3132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Billings, H. J. et al. Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology 151, 3836–3846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dalkin, A. C., Haisenleder, D. J., Ortolano, G. A., Ellis, T. R. & Marshall, J. C. The frequency of gonadotropin-releasing-hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression. Endocrinology 125, 917–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Young, J. et al. Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic implications. Neuroendocrinology 97, 193–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Lehman, M. N., Coolen, L. M. & Goodman, R. L. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goodman, R. L. et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148, 5752–5760 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Navarro, V. M. et al. Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 152, 4265–4275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Amstalden, M. et al. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 22, 1–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kangawa, K., Minamino, N., Fukuda, A. & Matsuo, H. Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 114, 533–540 (1983).

    Article  CAS  PubMed  Google Scholar 

  141. Laufer, R. et al. Neurokinin B is a preferred agonist for a neuronal substance P receptor and its action is antagonized by enkephalin. Proc. Natl Acad. Sci. USA 82, 7444–7448 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Buck, S. H., Burcher, E., Shults, C. W., Lovenberg, W. & O'Donohue, T. L. Novel pharmacology of substance K-binding sites: a third type of tachykinin receptor. Science 226, 987–989 (1984).

    Article  CAS  PubMed  Google Scholar 

  143. Torrens, Y. et al. Neuromedin K, a tool to further distinguish two central tachykinin binding sites. Eur. J. Pharmacol. 102, 381–382 (1984).

    Article  CAS  PubMed  Google Scholar 

  144. Buell, G. et al. Molecular characterisation, expression and localisation of human neurokinin-3 receptor. FEBS Lett. 299, 90–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Wormser, U. et al. Highly selective agonists for substance P receptor subtypes. EMBO J. 5, 2805–2808 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Laufer, R., Gilon, C., Chorev, M. & Selinger, Z. Characterization of a neurokinin B receptor site in rat brain using a highly selective radioligand. J. Biol. Chem. 261, 10257–10263 (1986).

    CAS  PubMed  Google Scholar 

  147. Drapeau, G. et al. Selective agonists for substance P and neurokinin receptors. Neuropeptides 10, 43–54 (1987).

    Article  CAS  PubMed  Google Scholar 

  148. Lavielle, S. et al. Selective agonists of tachykinin binding sites. Fundam. Clin. Pharmacol. 4, 257–268 (1990).

    Article  CAS  PubMed  Google Scholar 

  149. Boden, P. et al. Use of a dipeptide chemical library in the development of non-peptide tachykinin NK3 receptor selective antagonists. J. Med. Chem. 39, 1664–1675 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Emonds-Alt, X. et al. SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci. 56, PL27–PL32 (1995).

    CAS  PubMed  Google Scholar 

  151. Oury-Donat, F. et al. Functional characterization of the nonpeptide neurokinin3 (NK3) receptor antagonist, SR142801 on the human NK3 receptor expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 274, 148–154 (1995).

    CAS  PubMed  Google Scholar 

  152. Chung, F. Z. et al. Two classes of structurally different antagonists display similar species preference for the human tachykinin neurokinin3 receptor. Mol. Pharmacol. 48, 711–716 (1995).

    CAS  PubMed  Google Scholar 

  153. Nguyen-Le, X. K. et al. Pharmacological characterization of SR 142801: a new non-peptide antagonist of the neurokinin NK-3 receptor. Pharmacology 52, 283–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Emonds-Alt, X. et al. Biochemical and pharmacological activities of SSR 146977, a new potent nonpeptide tachykinin NK3 receptor antagonist. Can. J. Physiol. Pharmacol. 80, 482–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Harrison, T. et al. High affinity, selective neurokinin 2 and neurokinin 3 receptor antagonists from a common structural template. Bioorg. Med. Chem. Lett. 8, 1343–1348 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Giardina, G. A. et al. 2-Phenyl-4-quinolinecarboxamides: a novel class of potent and selective non-peptide competitive antagonists for the human neurokinin-3 receptor. J. Med. Chem. 39, 2281–2284 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Giardina, G. A. et al. Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 1. Identification of the 4-quinolinecarboxamide framework. J. Med. Chem. 40, 1794–1807 (1997).

    Article  CAS  PubMed  Google Scholar 

  158. Giardina, G. A. et al. Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 2. Identification of (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (SB 223412). J. Med. Chem. 42, 1053–1065 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Sarau, H. M. et al. Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist. J. Pharmacol. Exp. Ther. 281, 1303–1311 (1997).

    CAS  PubMed  Google Scholar 

  160. Sarau, H. M. et al. Nonpeptide tachykinin receptor antagonists. II. Pharmacological and pharmacokinetic profile of SB-222200, a central nervous system penetrant, potent and selective NK-3 receptor antagonist. J. Pharmacol. Exp. Ther. 295, 373–381 (2000).

    CAS  PubMed  Google Scholar 

  161. Smith, P. W. et al. New quinoline NK3 receptor antagonists with CNS activity. Bioorg. Med. Chem. Lett. 19, 837–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Hay, D. W. et al. Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs. J. Pharmacol. Exp. Ther. 300, 314–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Li, Y. et al. In vitro assessment of metabolic drug-drug interaction potential of AZD2624, neurokinin-3 receptor antagonist, through cytochrome P(450) enzyme identification, inhibition, and induction studies. Xenobiotica 40, 721–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Elliott, J. M. et al. N',2-diphenylquinoline-4-carbohydrazide based NK3 receptor antagonists II. Bioorg. Med. Chem. Lett. 16, 5752–5756 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Sarau, H. M. et al. Molecular and pharmacological characterization of the murine tachykinin NK(3) receptor. Eur. J. Pharmacol. 413, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Griebel, G. & Beeske, S. Is there still a future for neurokinin 3 receptor antagonists as potential drugs for the treatment of psychiatric diseases? Pharmacol. Ther. 133, 116–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Gordon, C. M. Clinical practice. Functional hypothalamic amenorrhea. N. Engl. J. Med. 363, 365–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Blank, S. K., McCartney, C. R. & Marshall, J. C. The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Hum. Reprod. Update 12, 351–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Seminara, S. B., Dipietro, M. J., Ramaswamy, S., Crowley, W. F. Jr & Plant, T. M. Continuous human metastin 45–54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology 147, 2122–2126 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Ramaswamy, S. et al. Effect of continuous intravenous administration of human metastin 45–54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology 148, 3364–3370 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Medical Research Council (South Africa), the National Research Foundation, the University of Pretoria and the University of Cape Town. C. L. Newton is a Claude Leon Foundation Postdoctoral Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert P. Millar.

Ethics declarations

Competing interests

Robert P. Millar declares associations with the following companies: Euroscreen (consultant), Ferring (consultant). Claire L. Newton declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, R., Newton, C. Current and future applications of GnRH, kisspeptin and neurokinin B analogues. Nat Rev Endocrinol 9, 451–466 (2013). https://doi.org/10.1038/nrendo.2013.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing