Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroendocrine tumours: the role of imaging for diagnosis and therapy

Key Points

  • When assessing neuroendocrine tumours (NETs), which comprise a wide variety of tumours with different imaging characteristics, morphological imaging (mostly CT or MRI) and nuclear medicine techniques are complementary

  • CT and MRI are typically used to evaluate a patient's response to therapy; however, a role for nuclear medicine techniques, aside from establishing progressive disease by visualizing new lesions, has yet to be defined

  • Somatostatin receptor imaging with radiolabelled somatostatin analogues is mandatory to determine whether patients are eligible for peptide receptor radionuclide therapy

  • 111In-pentetreotide scintigraphy is currently the most widely used method to assess somatostatin receptor expression, but 68Ga-DOTA-somatostatin analogue PET–CT could become the nuclear medicine test of choice for staging of patients with well-differentiated NETs

  • PET–CT with 18F-dihydroxy-L-phenylalanine and 11C-hydroxy-L-tryptophan might potentially be used in the future for therapy response evaluation

  • 18F-FDG-PET is only recommended in patients with grade 3 neuroendocrine cancers but shows potential for other indications, for example, to predict prognosis and determine treatment schedule

Abstract

In patients with neuroendocrine tumours (NETs), a combination of morphological imaging and nuclear medicine techniques is mandatory for primary tumour visualization, staging and evaluation of somatostatin receptor status. CT and MRI are well-suited for discerning small lesions that might escape detection by single photon emission tomography (SPECT) or PET, as well as for assessing the local invasiveness of the tumour or the response to therapy. Somatostatin receptor imaging, by 111In-pentetreotide scintigraphy or PET with 68Ga-labelled somatostatin analogues, frequently identifies additional lesions that are not visible on CT or MRI scans. Currently, somatostatin receptor scintigraphy with 111In-pentetreotide is the more frequently available of the two techniques to determine somatostatin receptor expression and is needed to select patients for peptide receptor radionuclide therapy. In the future, because of its higher sensitivity, PET with 68Ga-labelled somatostatin analogues is expected to replace somatostatin receptor scintigraphy. Whereas 18F-FDG-PET is only used in high-grade neuroendocrine cancers, PET–CT with 18F-dihydroxy-L-phenylalanine or 11C-5-hydroxy-L-tryptophan is a useful problem-solving tool and could be considered for the evaluation of therapy response in the future. This article reviews the role of imaging for the diagnosis and management of intestinal and pancreatic NETs. Response evaluation and controversies in NET imaging will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transversal CT image of a large hypervascular nonfunctioning pancreatic NET.
Figure 2: Transversal CT image of a typical small-bowel neuroendocrine tumour mesenteric metastasis (arrow).
Figure 3: Transversal CT image of a small hypervascular pancreatic neuroendocrine tumour in the pancreatic head (arrow).
Figure 4: T2-weighted transversal MRI of a high-signalling pancreatic neuroendocrine tumour.
Figure 5: Normal somatostatin receptor scintigram.
Figure 6: Comparison of neuroendocrine tumour imaging results with varying imaging modalities.
Figure 7: Suggested imaging procedures for patients with neuroendocrine tumours.
Figure 8: 68Ga-DOTA-TOC-PET–CT images of a patient with a small-bowel neuroendocrine tumour.
Figure 9: Diagnostic, therapeutic and follow-up imaging in a patient with metastasized pancreatic neuroendocrine tumour.

Similar content being viewed by others

References

  1. Rindi, G. et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 449, 395–401 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rindi, G. et al. TNM staging of midgut and hindgut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 451, 757–762 (2007).

    CAS  PubMed  Google Scholar 

  3. Hamilton, S. R. & Aaltonen, L. A. (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Digestive System (IARC Press, Lyon, 2000).

    Google Scholar 

  4. Bilimoria, K. Y. et al. Clinicopathologic features and treatment trends of pancreatic neuroendocrine tumors: analysis of 9,821 patients. J. Gastrointest. Surg. 11, 1460–1467 (2007).

    PubMed  Google Scholar 

  5. Bergsma, H. et al. Peptide receptor radionuclide therapy (PRRT) for GEP-NETs. Best Pract. Res. Clin. Gastroenterol. 26, 867–881 (2012).

    CAS  PubMed  Google Scholar 

  6. Sundin, A., Garske, U. & Orlefors, H. Nuclear imaging of neuroendocrine tumours. Best Pract. Res. Clin. Endocrinol. Metab. 21, 69–85 (2007).

    CAS  PubMed  Google Scholar 

  7. Sundin, A., Vullierme, M. P., Kaltsas, G. & Plöckinger, U. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology 90, 167–183 (2009).

    CAS  PubMed  Google Scholar 

  8. Sundin, A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract. Res. Clin. Gastroenterol. 26, 803–818 (2012).

    PubMed  Google Scholar 

  9. Masselli, G. & Gualdi, G. CT and MR enterography in evaluating small bowel diseases: when to use which modality? Abdom. Imaging 38, 249–259 (2013).

    PubMed  Google Scholar 

  10. Bailey, A. A. et al. Diagnosis and outcome of small bowel tumors found by capsule endoscopy: a three-center Australian experience. Am. J. Gastroenterol. 101, 2237–2243 (2006).

    PubMed  Google Scholar 

  11. Gallotti, A. et al. Incidental neuroendocrine tumors of the pancreas: MDCT findings and features of malignancy. AJR Am. J. Roentgenol. 200, 355–362 (2013).

    PubMed  Google Scholar 

  12. Poultsides, G. A. et al. Pancreatic neuroendocrine tumors: radiographic calcifications correlate with grade and metastasis. Ann. Surg. Oncol. 19, 2295–2303 (2012).

    PubMed  Google Scholar 

  13. Ishikawa, T. et al. Usefulness of EUS combined with contrast-enhancement in the differential diagnosis of malignant versus benign and preoperative localization of pancreatic endocrine tumors. Gastrointest. Endosc. 71, 951–959 (2010).

    PubMed  Google Scholar 

  14. Khashab, M. A. et al. EUS is still superior to multidetector computerized tomography for detection of pancreatic neuroendocrine tumors. Gastrointest. Endosc. 73, 691–696 (2011).

    PubMed  Google Scholar 

  15. Versari, A. et al. Ga-68 DOTA-TOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors: a single-centre retrospective study. Clin. Nucl. Med. 35, 321–328 (2010).

    PubMed  Google Scholar 

  16. Atiq, M. et al. EUS-FNA for pancreatic neuroendocrine tumors: a tertiary cancer center experience. Dig. Dis. Sci. 57, 791–800 (2012).

    CAS  PubMed  Google Scholar 

  17. Pais, S. A. et al. EUS for pancreatic neuroendocrine tumors: a single-center, 11-year experience. Gastrointest. Endosc. 71, 1185–1193 (2010).

    PubMed  Google Scholar 

  18. Stark, D. D., Moss, A. A., Goldberg, H. I. & Deveney, C. W. CT of pancreatic islet cell tumors. Radiology 150, 491–494 (1984).

    CAS  PubMed  Google Scholar 

  19. Rossi, P. et al. CT of functioning tumors of the pancreas. AJR Am. J. Roentgenol. 144, 57–60 (1985).

    CAS  PubMed  Google Scholar 

  20. Van Hoe, L., Gryspeerdt, S., Marchal, G., Baert, A. L. & Mertens, L. Helical CT for the preoperative localization of islet cell tumors of the pancreas: value of arterial and parenchymal phase images. AJR Am. J. Roentgenol. 165, 1437–1439 (1995).

    CAS  PubMed  Google Scholar 

  21. Procacci, C. et al. Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization. Eur. Radiol. 11, 1175–1183 (2001).

    CAS  PubMed  Google Scholar 

  22. Fidler, J. L. et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am. J. Roentgenol. 181, 775–780 (2003).

    CAS  PubMed  Google Scholar 

  23. Chiti, A. et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur. J. Nucl. Med. 25, 1396–1403 (1998).

    CAS  PubMed  Google Scholar 

  24. Kumbasar, B. et al. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom. Imaging 29, 696–702 (2004).

    CAS  PubMed  Google Scholar 

  25. Hubalewska-Dydejczyk, A. et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience. Eur. J. Nucl. Med. Mol. Imaging 33, 1123–1133 (2006).

    CAS  PubMed  Google Scholar 

  26. Cwikła, J. B. et al. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Med. Sci. Monit. 10 (Suppl. 3), 9–16 (2004).

    PubMed  Google Scholar 

  27. Thoeni, R. F., Mueller-Lisse, U. G., Chan, R., Do, N. K. & Shyn, P. B. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology 214, 483–490 (2000).

    CAS  PubMed  Google Scholar 

  28. Semelka, R. C., Custodio, C. M., Cem Balci, N. & Woosley, J. T. Neuroendocrine tumors of the pancreas: spectrum of appearances on MRI. J. Magn. Reson. Imaging 11, 141–148 (2000).

    CAS  PubMed  Google Scholar 

  29. Shi, W. et al. Localization of neuroendocrine tumours with [111In]-DTPA-octreotide scintigraphy (Octreoscan): a comparative study with CT and MR imaging. QJM 91, 295–301 (1998).

    CAS  PubMed  Google Scholar 

  30. Carlson, B., Johnson, C. D., Stephens, D. H., Ward, E. M. & Kvols, L. K. MRI of pancreatic islet cell carcinoma. J. Comput. Assist. Tomogr. 17, 735–740 (1993).

    CAS  PubMed  Google Scholar 

  31. Dromain, C. et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J. Clin. Oncol. 23, 70–78 (2005).

    PubMed  Google Scholar 

  32. Elias, D. et al. Hepatic metastases from neuroendocrine tumors with a “thin slice” pathological examination: they are many more than you think. Ann. Surg. 251, 307–310 (2010).

    PubMed  Google Scholar 

  33. Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    PubMed  Google Scholar 

  34. Khalil, M. M., Tremoleda, J. L., Bayomy, T. B. & Gsell, W. Molecular SPECT imaging: an overview. Int. J. Mol. Imaging 2011, 796025 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Modlin, I. M., Kidd, M., Latich, I., Zikusoka, M. N. & Shapiro, M. D. Current status of gastrointestinal carcinoids. Gastroenterology 128, 1717–1751 (2005).

    PubMed  Google Scholar 

  36. Reubi, J. C., Waser, B., Schaer, J. C. & Laissue, J. A. Somatostatin receptor SST1-SST5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 28, 836–846 (2001).

    CAS  PubMed  Google Scholar 

  37. Virgolini, I. et al. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin. Nucl. Med. 32, 148–155 (2002).

    PubMed  Google Scholar 

  38. Lebtahi, R. et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J. Nucl. Med. 43, 889–895 (2002).

    CAS  PubMed  Google Scholar 

  39. Koopmans, K. P. et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit. Rev. Oncol. Hematol. 71, 199–213 (2009).

    PubMed  Google Scholar 

  40. Bombardieri, E. et al. 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging 37, 1441–1448 (2010).

    PubMed  Google Scholar 

  41. Balon, H. R. et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J. Nucl. Med. Technol. 39, 317–324 (2011).

    PubMed  Google Scholar 

  42. Modlin, I. M. & Tang, L. H. Approaches to the diagnosis of gut neuroendocrine tumors: the last word (today). Gastroenterology 112, 583–590 (1997).

    CAS  PubMed  Google Scholar 

  43. Kaplan, E. L. & Lee, C. H. Recent advances in the diagnosis and treatment of insulinomas. Surg. Clin. North Am. 59, 119–129 (1979).

    CAS  PubMed  Google Scholar 

  44. Wild, D. et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J. Nucl. Med. 52, 1073–1078 (2011).

    PubMed  Google Scholar 

  45. Reubi, J. C. & Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 30, 781–793 (2003).

    CAS  PubMed  Google Scholar 

  46. Wild, D., Macke, H., Christ, E., Gloor, B. & Reubi, J. C. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N. Engl. J. Med. 359, 766–768 (2008).

    CAS  PubMed  Google Scholar 

  47. Christ, E. et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J. Clin. Endocrinol. Metab. 94, 4398–4405 (2009).

    CAS  PubMed  Google Scholar 

  48. Wild, D. et al. 'Running on empty'. Eur. J. Nucl. Med. Mol. Imaging 37, 1439–1440 (2010).

    PubMed  Google Scholar 

  49. Lu, S. J., Gnanasegaran, G., Buscombe, J. & Navalkissoor, S. Single photon emission computed tomography/computed tomography in the evaluation of neuroendocrine tumours: a review of the literature. Nucl. Med. Commun. 34, 98–107 (2013).

    CAS  PubMed  Google Scholar 

  50. Christenson, J. G., Dairman, W. & Udenfriend, S. On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin--dopamine-norepinephrine). Proc. Natl Acad. Sci. USA 69, 343–347 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Orlefors, H. et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C5-hydroxytryptophan positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 33, 60–65 (2006).

    CAS  PubMed  Google Scholar 

  52. National Nuclear Data Center. Nuclear structure and decay data [online], (2013).

  53. Hofland, L. J. & Lamberts, S. W. Somatostatin receptor subtype expression in human tumors. Ann. Oncol. 12 (Suppl. 2), S31–S36 (2001).

    PubMed  Google Scholar 

  54. Eriksson, B. et al. Developments in PET for the detection of endocrine tumours. Best Pract. Res. Clin. Endocrinol. Metab. 19, 311–324 (2005).

    CAS  PubMed  Google Scholar 

  55. Timmers, H. J. et al. The effects of carbidopa on uptake of 6-18F-Fluoro-L-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J. Nucl. Med. 48, 1599–1606 (2007).

    CAS  PubMed  Google Scholar 

  56. Kauhanen, S., Seppänen, M. & Nuutila, P. Premedication with carbidopa masks positive finding of insulinoma and β-cell hyperplasia in [18F]-dihydroxy-phenyl-alanine positron emission tomography. J. Clin. Oncol. 26, 5307–5308 (2008).

    PubMed  Google Scholar 

  57. Antunes, P. et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur. J. Nucl. Med. Mol. Imaging 34, 982–993 (2007).

    CAS  PubMed  Google Scholar 

  58. Treglia, G., Castaldi, P., Rindi, G., Giordano, A. & Rufini, V. Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine 42, 80–87 (2012).

    CAS  PubMed  Google Scholar 

  59. Freudenberg, L. S., Rosenbaum, S. J., Beyer, T., Bockisch, A. & Antoch, G. PET versus PET/CT dual-modality imaging in evaluation of lung cancer. Radiol. Clin. North Am. 45, 639–644 (2007).

    PubMed  Google Scholar 

  60. Breeman, W. A. et al. 68Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin. Nucl. Med. 41, 314–321 (2011).

    PubMed  Google Scholar 

  61. Ambrosini, V., Campana, D., Tomassetti, P. & Fanti, S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging 39, S52–S60 (2012).

    PubMed  Google Scholar 

  62. Virgolini, I. et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging 37, 2004–2010 (2010).

    PubMed  Google Scholar 

  63. Ambrosini, V. et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 35, 1431–1438 (2008).

    CAS  PubMed  Google Scholar 

  64. Haug, A. et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 36, 765–770 (2009).

    CAS  PubMed  Google Scholar 

  65. Putzer, D. et al. Comparison of (68)Ga-DOTA-Tyr(3)-octreotide and 18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients. Q. J. Nucl. Med. Mol. Imaging 54, 68–75 (2010).

    CAS  PubMed  Google Scholar 

  66. Binderup, T. et al. Gene expression of glucose transporter 1 (GLUT1), hexokinase 1 and hexokinase 2 in gastroenteropancreatic neuroendocrine tumors: correlation with F18--fluorodeoxyglucose positron emission tomography and cellular proliferation. Diagnostics 3, 372–384 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Pasquali, C. et al. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J. Surg. 22, 588–592 (1998).

    CAS  PubMed  Google Scholar 

  68. Binderup, T. et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med. 51, 704–712 (2010).

    PubMed  Google Scholar 

  69. Adams, S. et al. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl. Med. Commun. 19, 641–647 (1998).

    CAS  PubMed  Google Scholar 

  70. Ambrosini, V., Fani, M., Fanti, S., Forrer, F. & Maecke, H. R. Radiopeptide imaging and therapy in Europe. J. Nucl. Med. 52, 42S–55S (2011).

    CAS  PubMed  Google Scholar 

  71. Teunissen, J. J., Kwekkeboom, D. J., Valkema, R. & Krenning, E. P. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr. Relat. Cancer 18, S27–S51 (2011).

    CAS  PubMed  Google Scholar 

  72. Hofmann, M. et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751–1757 (2001).

    CAS  PubMed  Google Scholar 

  73. Kowalski, J. et al. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol. 5, 42–48 (2003).

    PubMed  Google Scholar 

  74. Buchmann, I. et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 34, 1617–1626 (2007).

    CAS  PubMed  Google Scholar 

  75. Srirajaskanthan, R. et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 51, 875–882 (2010).

    CAS  PubMed  Google Scholar 

  76. Krausz, Y. et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with ¹¹¹In-DTPA-octreotide (OctreoScan®). Mol. Imaging Biol. 13, 583–593 (2011).

    PubMed  Google Scholar 

  77. Hofman, M. S. et al. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J. Med. Imaging Radiat. Oncol. 56, 40–47 (2012).

    PubMed  Google Scholar 

  78. Gabriel, M. et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 48, 508–518 (2007).

    CAS  PubMed  Google Scholar 

  79. Wild, D. et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med. 54, 364–372 (2013).

    CAS  PubMed  Google Scholar 

  80. Poeppel, T. D. et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J. Nucl. Med. 52, 1864–1870 (2011).

    CAS  PubMed  Google Scholar 

  81. Kabasakal, L. et al. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 39, 1271–1277 (2012).

    PubMed  Google Scholar 

  82. Koopmans, K. P. et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 7, 728–734 (2006).

    CAS  PubMed  Google Scholar 

  83. Koopmans, K. P. et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J. Clin. Oncol. 26, 1489–1495 (2008).

    PubMed  Google Scholar 

  84. Schiesser, M. et al. Value of combined 6-[18F]fluorodihydroxyphenylalanine PET/CT for imaging of neuroendocrine tumours. Br. J. Surg. 97, 691–697 (2010).

    CAS  PubMed  Google Scholar 

  85. Montravers, F. et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J. Nucl. Med. 47, 1455–1462 (2006).

    CAS  PubMed  Google Scholar 

  86. Yakemchuk, V. N. et al. PET/CT using 18F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl. Med. Commun. 33, 322–330 (2012).

    CAS  PubMed  Google Scholar 

  87. Becherer, A. et al. Imaging of advanced neuroendocrine tumors with 18)F-FDOPA PET. J. Nucl. Med. 45, 1161–1167 (2004).

    CAS  PubMed  Google Scholar 

  88. Balogova, S. et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur. J. Nucl. Med. Mol. Imaging 40, 943–966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Orlefors, H. et al. Whole-body 11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J. Clin. Endocrinol. Metab. 90, 3392–3400 (2005).

    CAS  PubMed  Google Scholar 

  90. Abgral, R. et al. Performance of 18Fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J. Clin. Endocrinol. Metab. 96, 665–671 (2011).

    CAS  PubMed  Google Scholar 

  91. Salazar, R. et al. ENETS 2011 consensus guidelines for the management of patients with digestive neuroendocrine tumors: an update. Neuroendocrinology 95, 71–73 (2012).

    CAS  PubMed  Google Scholar 

  92. Kvols, L. K. et al. The North American Neuroendocrine Tumor Society (NANETS) guidelines: mission, goals, and process. Pancreas 39, 705–706 (2010).

    PubMed  Google Scholar 

  93. Kwekkeboom, D. J. et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: somatostatin receptor imaging with 111In-pentetreotide. Neuroendocrinology 90, 184–189 (2009).

    CAS  PubMed  Google Scholar 

  94. Ito, T., Igarashi, H. & Jensen, R. T. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract. Res. Clin. Gastroenterol. 26, 737–753 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  96. Strosberg, J. R. Systemic treatment of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): current approaches and future options. Endocr. Pract. http://dx.doi.org/10.4158/EP13262.RA.

  97. Sundin, A. & Rockall, A. Therapeutic monitoring of gastroenteropancreatic neuroendocrine tumors: the challenges ahead. Neuroendocrinology 96, 261–271 (2012).

    CAS  PubMed  Google Scholar 

  98. Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).

    PubMed  Google Scholar 

  99. Young, H. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer 35, 1773–1782 (1999).

    CAS  PubMed  Google Scholar 

  100. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50, 122S–150S (2009).

    CAS  PubMed  Google Scholar 

  101. Kwekkeboom, D. J. et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J. Clin. Oncol. 23, 2754–2762 (2005).

    CAS  PubMed  Google Scholar 

  102. Haug, A. R. et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med. 51, 1349–1356 (2010).

    CAS  PubMed  Google Scholar 

  103. Gabriel, M. et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J. Nucl. Med. 50, 1427–1434 (2009).

    CAS  PubMed  Google Scholar 

  104. Velikyan, I. et al. In vivo binding of [68Ga]-DOTATOC to somatostatin receptors in neuroendocrine tumours--impact of peptide mass. Nucl. Med. Biol. 37, 265–275 (2010).

    CAS  PubMed  Google Scholar 

  105. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Binderup, T., Knigge, U., Loft, A., Federspiel, B. & Kjaer, A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010).

    CAS  PubMed  Google Scholar 

  107. Severi, S. et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 40, 881–888 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eric P. Krenning.

Ethics declarations

Competing interests

E.P. Krenning and D.J. Kwekkeboom are stockholders in Advanced Accelerator Applications (AAA). The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Essen, M., Sundin, A., Krenning, E. et al. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10, 102–114 (2014). https://doi.org/10.1038/nrendo.2013.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing