Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Differentiated thyroid cancer—personalized therapies to prevent overtreatment

Key Points

  • In some patients with a very low risk of differentiated thyroid cancer or in patients with a high risk of complications, watchful waiting instead of aggressive treatment might be appropriate

  • High surgical comorbidity due to hypoparathyroidism or recurrent laryngeal nerve palsy can best be prevented by referral to an experienced thyroid surgeon

  • In patients with advanced differentiated thyroid carcinoma, dosimetry might be appropriate before 131I therapy to maximize the effect of treatment

  • Comorbidity due to hypothyroidism can be prevented by the use of recombinant human TSH before initiation of 131I therapy, diagnostic 131I scintigraphy or stimulated measurement of thyroglobulin levels

  • On the basis of individual tumour genetic characteristics, new multitargeted kinase inhibitors enable a more personalized treatment of patients who have an aggressive presentation of thyroid carcinoma

Abstract

The concept of individualized therapy is rapidly gaining recognition in the management of patients with differentiated thyroid cancer (DTC). This Review provides an overview of the most important elements of this paradigm shift in DTC management and discusses the implications for clinical practice. In the majority of patients with DTC who have an inherently good prognosis, the extent of surgery, the dosage of 131I therapy and the use of levothyroxine therapy are all aspects suitable for individualization, on the basis of both the stage of disease and the response to treatment. In individuals with advanced disease, newer imaging techniques, advances in 131I therapy and the use of targeted molecular therapies (such as multitargeted kinase inhibitors) have provided new options for the personalized care of patients, for whom until recently no effective therapies were available. Individualized therapies could reduce adverse effects, including the sometimes debilitating hypothyroidism that used to be required before initiation of 131I treatment, and major salivary gland damage, a common and unpleasant side effect of 131I therapy. Highly individualized interdisciplinary treatment of patients with DTC might lead to improved outcomes with reduced severity and frequency of complications and adverse effects. However, in spite of ongoing research, personalized therapies remain in their infancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficacy of sorafenib in the treatment of differentiated thyroid cancer.

Similar content being viewed by others

References

  1. Lee, T. J., Kim, S., Cho, H. J. & Lee, J. H. The incidence of thyroid cancer is affected by the characteristics of a healthcare system. J. Korean Med. Sci. 27, 1491–1498 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Udelsman, R. & Zhang, Y. The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid 24, 472–479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, A. Y., Jemal, A. & Ward, E. M. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115, 3801–3807 (2009).

    Article  PubMed  Google Scholar 

  4. Biermann, M. et al. Multicenter study differentiated thyroid carcinoma (MSDS). Diminished acceptance of adjuvant external beam radiotherapy. Nuklearmedizin 42, 244–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Haymart, M. R. et al. Variation in the management of thyroid cancer. J. Clin. Endocrinol. Metab. 98, 2001–2008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banach, R. et al. Results of the Thyroid Cancer Alliance international patient/survivor survey: psychosocial/informational support needs, treatment side effects and international differences in care. Hormones (Athens) 12, 428–438 (2013).

    Article  Google Scholar 

  7. Alexander, E. K. et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367, 705–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Wale, A. et al. Combined 99mTc-methoxyisobutylisonitrile scintigraphy and fine-needle aspiration cytology offers an accurate and potentially cost-effective investigative strategy for the assessment of solitary or dominant thyroid nodules. Eur. J. Nucl. Med. Mol. Imaging 41, 105–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Verburg, F. A. et al. Life expectancy is reduced in differentiated thyroid cancer patients ≥45 years old with extensive local tumor invasion, lateral lymph node, or distant metastases at diagnosis and normal in all other DTC patients. J. Clin. Endocrinol. Metab. 98, 172–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Links, T. P. et al. Life expectancy in differentiated thyroid cancer: a novel approach to survival analysis. Endocr. Relat. Cancer 12, 273–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Vrachimis, A., Riemann, B., Gerss, J., Maier, T. & Schober, O. Peace of mind for patients with differentiated thyroid cancer? Nuklearmedizin 52, 115–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ito, K. et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 24, 27–34 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robbins, R. J. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 91, 498–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Miyauchi, A. et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid 21, 707–716 (2011).

    Article  PubMed  Google Scholar 

  15. Cooper, D. S. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009).

    Article  PubMed  Google Scholar 

  16. Pacini, F. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 154, 787–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Pacini, F., Castagna, M. G., Brilli, L. & Pentheroudakis, G. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21 (Suppl. 5), v214–v219 (2010).

    Article  PubMed  Google Scholar 

  18. Bilimoria, K. Y. et al. Extent of surgery affects survival for papillary thyroid cancer. Ann. Surg. 246, 375–381 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barney, B. M., Hitchcock, Y. J., Sharma, P., Shrieve, D. C. & Tward, J. D. Overall and cause-specific survival for patients undergoing lobectomy, near-total, or total thyroidectomy for differentiated thyroid cancer. Head Neck 33, 645–649 (2011).

    Article  PubMed  Google Scholar 

  20. Haigh, P. I., Urbach, D. R. & Rotstein, L. E. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann. Surg. Oncol. 12, 81–89 (2005).

    Article  PubMed  Google Scholar 

  21. Mendelsohn, A. H., Elashoff, D. A., Abemayor, E. & St John, M. A. Surgery for papillary thyroid carcinoma: is lobectomy enough? Arch. Otolaryngol. Head Neck Surg. 136, 1055–1061 (2010).

    Article  PubMed  Google Scholar 

  22. Matsuzu, K. et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J. Surg. 38, 68–79 (2014).

    Article  PubMed  Google Scholar 

  23. Ito, Y. et al. Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5,768 patients with average 10-year follow-up. World J. Surg. 36, 1274–1278 (2012).

    Article  PubMed  Google Scholar 

  24. Pereira, J. A. et al. Nodal yield, morbidity, and recurrence after central neck dissection for papillary thyroid carcinoma. Surgery 138, 1095–1100 (2005).

    Article  PubMed  Google Scholar 

  25. Grogan, R. H. et al. A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 154, 1436–1446 (2013).

    Article  PubMed  Google Scholar 

  26. Barczynski, M., Konturek, A., Stopa, M. & Nowak, W. Nodal recurrence in the lateral neck after total thyroidectomy with prophylactic central neck dissection for papillary thyroid cancer. Langenbecks Arch. Surg. 399, 237–244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kruijff, S. et al. Patterns of structural recurrence in papillary thyroid cancer. World J. Surg. 38, 653–659 (2014).

    Article  PubMed  Google Scholar 

  28. Wang, T. S., Cheung, K., Farrokhyar, F., Roman, S. A. & Sosa, J. A. A meta-analysis of the effect of prophylactic central compartment neck dissection on locoregional recurrence rates in patients with papillary thyroid cancer. Ann. Surg. Oncol. 20, 3477–3483 (2013).

    Article  PubMed  Google Scholar 

  29. Lundgren, C. I., Hall, P., Dickman, P. W. & Zedenius, J. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case–control study. Cancer 106, 524–531 (2006).

    Article  PubMed  Google Scholar 

  30. Zaydfudim, V., Feurer, I. D., Griffin, M. R. & Phay, J. E. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery 144, 1070–1077 (2008).

    Article  PubMed  Google Scholar 

  31. Enyioha, C., Roman, S. A. & Sosa, J. A. Central lymph node dissection in patients with papillary thyroid cancer: a population level analysis of 14,257 cases. Am. J. Surg. 205, 655–661 (2013).

    Article  PubMed  Google Scholar 

  32. Chisholm, E. J., Kulinskaya, E. & Tolley, N. S. Systematic review and meta-analysis of the adverse effects of thyroidectomy combined with central neck dissection as compared with thyroidectomy alone. Laryngoscope 119, 1135–1139 (2009).

    Article  PubMed  Google Scholar 

  33. Shan, C. X. et al. Routine central neck dissection in differentiated thyroid carcinoma: a systematic review and meta-analysis. Laryngoscope 122, 797–804 (2012).

    Article  PubMed  Google Scholar 

  34. Zhu, W., Zhong, M. & Ai, Z. Systematic evaluation of prophylactic neck dissection for the treatment of papillary thyroid carcinoma. Jpn J. Clin. Oncol. 43, 883–888 (2013).

    Article  PubMed  Google Scholar 

  35. Zetoune, T. et al. Prophylactic central neck dissection and local recurrence in papillary thyroid cancer: a meta-analysis. Ann. Surg. Oncol. 17, 3287–3293 (2010).

    Article  PubMed  Google Scholar 

  36. Zanocco, K., Elaraj, D. & Sturgeon, C. Routine prophylactic central neck dissection for low-risk papillary thyroid cancer: a cost-effectiveness analysis. Surgery 154, 1148–1155 (2013).

    Article  PubMed  Google Scholar 

  37. Carling, T. et al. American Thyroid Association design and feasibility of a prospective randomized controlled trial of prophylactic central lymph node dissection for papillary thyroid carcinoma. Thyroid 22, 237–244 (2012).

    Article  PubMed  Google Scholar 

  38. Dultz, L. A. et al. Clinical and therapeutic implications of Sprouty2 feedback dysregulation in BRAF V600E-mutation-positive papillary thyroid cancer. Surgery 154, 1239–1244 (2013).

    Article  PubMed  Google Scholar 

  39. Stack, B. C. Jr et al. American Thyroid Association consensus review and statement regarding the anatomy, terminology, and rationale for lateral neck dissection in differentiated thyroid cancer. Thyroid 22, 501–508 (2012).

    Article  PubMed  Google Scholar 

  40. Dralle, H. et al. Risk factors of paralysis and functional outcome after recurrent laryngeal nerve monitoring in thyroid surgery. Surgery 136, 1310–1322 (2004).

    Article  PubMed  Google Scholar 

  41. Dralle, H., Sekulla, C., Lorenz, K., Brauckhoff, M. & Machens, A. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J. Surg. 32, 1358–1366 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Phelan, E. et al. Continuous vagal IONM prevents RLN paralysis by revealing initial EMG changes of impending neuropraxic injury: a prospective, multicenter study. Laryngoscope 124, 1498–1505 (2014).

    Article  PubMed  Google Scholar 

  43. Loch-Wilkinson, T. J. et al. Nerve stimulation in thyroid surgery: is it really useful? ANZ J. Surg. 77, 377–380 (2007).

    Article  PubMed  Google Scholar 

  44. Barczynski, M. et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope 123 (Suppl. 4), S1–S14 (2013).

    Article  PubMed  Google Scholar 

  45. Arlt, W. et al. Well-being, mood and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur. J. Endocrinol. 146, 215–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bohrer, T., Pasteur, I., Lyutkevych, O., Fleischmann, P. & Tronko, M. Permanent hypoparathyroidism due to thyroid cancer surgical procedures in patients exposed to radiation in the Chernobyl, Ukraine, nuclear reactor accident. [German]. Dtsch Med. Wochenschr. 130, 2501–2506 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Thomusch, O. et al. Multivariate analysis of risk factors for postoperative complications in benign goiter surgery: prospective multicenter study in Germany. World J. Surg. 24, 1335–1341 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. McHenry, C. R., Speroff, T., Wentworth, D. & Murphy, T. Risk factors for post-thyroidectomy hypocalcemia. Surgery 116, 641–647 (1994).

    CAS  PubMed  Google Scholar 

  49. Wingert, D. J. et al. Post-thyroidectomy hypocalcemia. Incidence and risk factors. Am. J. Surg. 152, 606–610 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Paek, S. H. et al. Risk factors of hypoparathyroidism following total thyroidectomy for thyroid cancer. World J. Surg. 37, 94–101 (2013).

    Article  PubMed  Google Scholar 

  51. Bozec, A. et al. Clinical impact of cervical lymph node involvement and central neck dissection in patients with papillary thyroid carcinoma: a retrospective analysis of 368 cases. Eur. Arch. Otorhinolaryngol. 268, 1205–1212 (2011).

    Article  PubMed  Google Scholar 

  52. Cavicchi, O. et al. Transient hypoparathyroidism following thyroidectomy: a prospective study and multivariate analysis of 604 consecutive patients. Otolaryngol. Head Neck Surg. 137, 654–658 (2007).

    Article  PubMed  Google Scholar 

  53. Demidchik, Y. E. et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann. Surg. 243, 525–532 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  54. van Santen, H. M. et al. Frequent adverse events after treatment for childhood-onset differentiated thyroid carcinoma: a single institute experience. Eur. J. Cancer 40, 1743–1751 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Henry, J. F. et al. Morbidity of prophylactic lymph node dissection in the central neck area in patients with papillary thyroid carcinoma. Langenbecks Arch. Surg. 383, 167–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Cayo, A. K. et al. Predicting the need for calcium and calcitriol supplementation after total thyroidectomy: results of a prospective, randomized study. Surgery 152, 1059–1067 (2012).

    Article  PubMed  Google Scholar 

  57. Seidlin, S. M., Marinelli, L. D. & Oshry, E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. JAMA 132, 838–847 (1946).

    Article  CAS  Google Scholar 

  58. Eskandari, S. et al. Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272, 27230–27238 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Mazzaferri, E. L. & Jhiang, S. M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 97, 418–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Verburg, F. A., de Keizer, B., Lips, C. J., Zelissen, P. M. & de Klerk, J. M. Prognostic significance of successful ablation with radioiodine of differentiated thyroid cancer patients. Eur. J. Endocrinol. 152, 33–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Mazzaferri, E. L. & Kloos, R. T. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab. 86, 1447–1463 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Tubiana, M. et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer 55, 794–804 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Simpson, W. J., Panzarella, T., Carruthers, J. S., Gospodarowicz, M. K. & Sutcliffe, S. B. Papillary and follicular thyroid cancer: impact of treatment in 1,578 patients. Int. J. Radiat. Oncol. Biol. Phys. 14, 1063–1075 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Schlumberger, M. J. Papillary and follicular thyroid carcinoma. N. Engl. J. Med. 338, 297–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Utiger, R. D. Follow-up of patients with thyroid carcinoma. N. Engl. J. Med. 337, 928–930 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Shattuck, T. M., Westra, W. H., Ladenson, P. W. & Arnold, A. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N. Engl. J. Med. 352, 2406–2412 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Verburg, F. A., Dietlein, M., Lassmann, M., Luster, M. & Reiners, C. Why radioiodine remnant ablation is right for most patients with differentiated thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 36, 343–346 (2009).

    Article  PubMed  Google Scholar 

  68. Sherman, S. I., Tielens, E. T., Sostre, S., Wharam, M. D. Jr & Ladenson, P. W. Clinical utility of post-treatment radioiodine scans in the management of patients with thyroid carcinoma. J. Clin. Endocrinol. Metab. 78, 629–634 (1994).

    CAS  PubMed  Google Scholar 

  69. Tenenbaum, F., Corone, C., Schlumberger, M. & Parmentier, C. Thyroglobulin measurement and postablative iodine-131 total body scan after total thyroidectomy for differentiated thyroid carcinoma in patients with no evidence of disease. Eur. J. Cancer 32A, 1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. DeGroot, L. J., Kaplan, E. L., Shukla, M. S., Salti, G. & Straus, F. H. Morbidity and mortality in follicular thyroid cancer. J. Clin. Endocrinol. Metab. 80, 2946–2953 (1995).

    CAS  PubMed  Google Scholar 

  71. Samaan, N. A. et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1,599 patients. J. Clin. Endocrinol. Metab. 75, 714–720 (1992).

    CAS  PubMed  Google Scholar 

  72. Sawka, A. M. et al. Clinical review 170: a systematic review and meta-analysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 89, 3668–3676 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Pacini, F. et al. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur. J. Endocrinol. 153, 651–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Rosario, P. W. et al. Is adjuvant therapy useful in patients with papillary carcinoma smaller than 2 cm? Thyroid 17, 1225–1228 (2007).

    Article  PubMed  Google Scholar 

  75. Durante, C. et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J. Clin. Endocrinol. Metab. 97, 2748–2753 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Nascimento, C. et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur. J. Endocrinol. 169, 689–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Verburg, F. A. et al. No survival difference after successful 131I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 37, 276–283 (2010).

    Article  PubMed  Google Scholar 

  78. Mazzaferri, E. L. & Kloos, R. T. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J. Clin. Endocrinol. Metab. 87, 1490–1498 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Mallick, U., Harmer, C., Hackshaw, A. & Moss, L. Iodine or Not (IoN) for low-risk differentiated thyroid cancer: the next UK National Cancer Research Network randomised trial following HiLo. Clin. Oncol. (R. Coll. Radiol.) 24, 159–161 (2012).

    Article  CAS  Google Scholar 

  80. Edmonds, C. J., Hayes, S., Kermode, J. C. & Thompson, B. D. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br. J. Radiol. 50, 799–807 (1977).

    Article  CAS  PubMed  Google Scholar 

  81. Bal, C. S., Kumar, A. & Pant, G. S. Radioiodine lobar ablation as an alternative to completion thyroidectomy in patients with differentiated thyroid cancer. Nucl. Med. Commun. 24, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Luster, M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 1941–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Reiners, C. & Demidchik, Y. E. Differentiated thyroid cancer in childhood: pathology, diagnosis, therapy. Pediatr. Endocrinol. Rev. 1 (Suppl. 2), 230–235 (2003).

    PubMed  Google Scholar 

  84. Reiners, C. et al. Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very-high-risk radiation-induced differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 98, 3039–3048 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Hanscheid, H. et al. Success of the postoperative 131I therapy in young Belarusian patients with differentiated thyroid cancer after Chernobyl depends on the radiation absorbed dose to the blood and the thyroglobulin level. Eur. J. Nucl. Med. Mol. Imaging 38, 1296–1302 (2011).

    Article  PubMed  Google Scholar 

  86. Doi, S. A., Woodhouse, N. J., Thalib, L. & Onitilo, A. Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta-analysis revisited. Clin. Med. Res. 5, 87–90 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cheng, W. et al. Low- or high-dose radioiodine remnant ablation for differentiated thyroid carcinoma: a meta-analysis. J. Clin. Endocrinol. Metab. 98, 1353–1360 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Bal, C., Padhy, A. K., Jana, S., Pant, G. S. & Basu, A. K. Prospective randomized clinical trial to evaluate the optimal dose of 131I for remnant ablation in patients with differentiated thyroid carcinoma. Cancer 77, 2574–2580 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Doi, S. A. & Woodhouse, N. J. Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin. Endocrinol. (Oxf.) 52, 765–773 (2000).

    Article  CAS  Google Scholar 

  90. Hackshaw, A., Harmer, C., Mallick, U., Haq, M. & Franklyn, J. A. 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J. Clin. Endocrinol. Metab. 92, 28–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Mallick, U. et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N. Engl. J. Med. 366, 1674–1685 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Schlumberger, M. et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N. Engl. J. Med. 366, 1663–1673 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Lassmann, M., Reiners, C. & Luster, M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr. Relat. Cancer 17, R161–R172 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Lassmann, M., Hanscheid, H., Verburg, F. A. & Luster, M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q. J. Nucl. Med. Mol. Imaging 55, 107–115 (2011).

    CAS  PubMed  Google Scholar 

  95. Reiners, C., Hanscheid, H., Luster, M., Lassmann, M. & Verburg, F. A. Radioiodine for remnant ablation and therapy of metastatic disease. Nat. Rev. Endocrinol. 7, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Lassmann, M. et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 35, 1405–1412 (2008).

    Article  PubMed  Google Scholar 

  97. Verburg, F. A. et al. The absorbed dose to the blood is a better predictor of ablation success than the administered 131I activity in thyroid cancer patients. Eur. J. Nucl. Med. Mol. Imaging 38, 673–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Klubo-Gwiezdzinska, J. et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 96, 3217–3225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Molinaro, E. et al. Patients with differentiated thyroid cancer who underwent radioiodine thyroid remnant ablation with low-activity 131I after either recombinant human TSH or thyroid hormone therapy withdrawal showed the same outcome after a 10-year follow-up. J. Clin. Endocrinol. Metab. 98, 2693–2700 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Castagna, M. G. et al. Post-surgical thyroid ablation with low or high radioiodine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur. J. Endocrinol. 169, 23–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Luster, M., Felbinger, R., Dietlein, M. & Reiners, C. Thyroid hormone withdrawal in patients with differentiated thyroid carcinoma: a one hundred thirty-patient pilot survey on consequences of hypothyroidism and a pharmacoeconomic comparison to recombinant thyrotropin administration. Thyroid 15, 1147–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Dow, K. H., Ferrell, B. R. & Anello, C. Quality-of-life changes in patients with thyroid cancer after withdrawal of thyroid hormone therapy. Thyroid 7, 613–619 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Schroeder, P. R. et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 91, 878–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Hanscheid, H. et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J. Nucl. Med. 47, 654 (2006).

    Google Scholar 

  105. Rosario, P. W., Borges, M. A. & Purisch, S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J. Nucl. Med. 49, 1776–1782 (2008).

    Article  PubMed  Google Scholar 

  106. Frigo, A. et al. Chromosome translocation frequency after radioiodine thyroid remnant ablation: a comparison between recombinant human thyrotropin stimulation and prolonged levothyroxine withdrawal. J. Clin. Endocrinol. Metab. 94, 3472–3476 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Haugen, B. R. et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J. Clin. Endocrinol. Metab. 84, 3877–3885 (1999).

    CAS  PubMed  Google Scholar 

  108. Borget, I. et al. Length and cost of hospital stay of radioiodine ablation in thyroid cancer patients: comparison between preparation with thyroid hormone withdrawal and thyrogen. Eur. J. Nucl. Med. Mol. Imaging 35, 1457–1463 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Borget, I. et al. Sick leave for follow-up control in thyroid cancer patients: comparison between stimulation with thyrogen and thyroid hormone withdrawal. Eur. J. Endocrinol. 156, 531–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Luster, M. et al. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 85, 3640–3645 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. de Keizer, B. et al. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur. J. Nucl. Med. Mol. Imaging 30, 367–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Robbins, R. J., Driedger, A. & Magner, J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid 16, 1121–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Bohuslavizki, K. H. et al. Salivary gland protection by S-2-(3-aminopropylamino)-ethylphosphorothioic acid (amifostine) in high-dose radioiodine treatment: results obtained in a rabbit animal model and in a double-blind multi-arm trial. Cancer Biother. Radiopharm. 14, 337–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, S. J. et al. Limited cytoprotective effects of amifostine in high-dose radioactive iodine 131-treated well-differentiated thyroid cancer patients: analysis of quantitative salivary scan. Thyroid 18, 325–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Jentzen, W. et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET(/CT) imaging. Eur. J. Nucl. Med. Mol. Imaging 37, 2298–2306 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Nakada, K. et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J. Nucl. Med. 46, 261–266 (2005).

    PubMed  Google Scholar 

  117. Verburg, F. A., Mader, U., Kruitwagen, C. L., Luster, M. & Reiners, C. A comparison of prognostic classification systems for differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 72, 830–838 (2010).

    Article  Google Scholar 

  118. Brierley, J. D., Panzarella, T., Tsang, R. W., Gospodarowicz, M. K. & O'Sullivan, B. A comparison of different staging systems predictability of patient outcome. Thyroid carcinoma as an example. Cancer 79, 2414–2423 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Tuttle, R. M. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 20, 1341–1349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Blum, M., Tiu, S., Chu, M., Goel, S. & Friedman, K. I-131 SPECT/CT elucidates cryptic findings on planar whole-body scans and can reduce needless therapy with I-131 in post-thyroidectomy thyroid cancer patients. Thyroid 21, 1235–1247 (2011).

    Article  PubMed  Google Scholar 

  121. Wiersinga, W. M., Duntas, L., Fadeyev, V., Nygaard, B. & Vanderpump, M. P. J. 2012 ETA guidelines: the use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur. Thyroid J. 1, 55–71 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. McLeod, D. S. et al. Prognosis of differentiated thyroid cancer in relation to serum TSH and thyroglobulin antibody status at time of diagnosis. Thyroid 24, 35–42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smit, J. W. et al. Reversible diastolic dysfunction after long-term exogenous subclinical hyperthyroidism: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 90, 6041–6047 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Selmer, C. et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ 345, e7895 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hovens, G. C. et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 92, 2610–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Cooper, D. S. et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid 8, 737–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Diessl, S. et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 76, 586–592 (2012).

    Article  CAS  Google Scholar 

  128. Sherman, S. I. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin. Oncol. (R. Coll. Radiol.) 22, 464–468 (2010).

    Article  CAS  Google Scholar 

  129. Nikiforov, Y. E. & Nikiforova, M. N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7, 569–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Elisei, R. et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab. 93, 3943–3949 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Sarne, D. H. A piece of the puzzle: what does BRAF status mean in the management of patients with papillary thyroid carcinoma? J. Clin. Endocrinol. Metab. 97, 3094–3096 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Simon, D. et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur. J. Nucl. Med. Mol. Imaging 29, 775–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Handkiewicz-Junak, D. et al. 13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-Functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res. 2, 8 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Short, S. C., Suovuori, A., Cook, G., Vivian, G. & Harmer, C. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin. Oncol. (R. Coll. Radiol.) 16, 569–574 (2004).

    Article  CAS  Google Scholar 

  135. Liu, Y. Y. et al. Radioiodine therapy after pretreatment with bexarotene for metastases of differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 68, 605–609 (2008).

    Article  CAS  Google Scholar 

  136. Liu, Y. Y. et al. Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma. Eur. J. Endocrinol. 154, 525–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Tepmongkol, S., Keelawat, S., Honsawek, S. & Ruangvejvorachai, P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-γ. Thyroid 18, 697–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Rosenbaum-Krumme, S. J., Freudenberg, L. S., Jentzen, W., Bockisch, A. & Nagarajah, J. Effects of rosiglitazone on radioiodine negative and progressive differentiated thyroid carcinoma as assessed by 124I PET/CT imaging. Clin. Nucl. Med. 37, e47–e52 (2012).

    Article  PubMed  Google Scholar 

  139. Kebebew, E. et al. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid 19, 953–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Rosenbaum-Krumme, S. J., Bockisch, A. & Nagarajah, J. Pioglitazone therapy in progressive differentiated thyroid carcinoma. Nuklearmedizin 51, 111–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hoftijzer, H. et al. Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur. J. Endocrinol. 161, 923–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, K. B. et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid 23, 1277–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dadu, R. et al. Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J. Clin. Endocrinol. Metab. 99, 2086–2094 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lim, S. M. et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann. Oncol. 24, 3089–3096 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Pacini, F. et al. Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Exp. Rev. Endocrinol. Metab. 7, 541–554 (2012).

    Article  CAS  Google Scholar 

  147. Versari, A. et al. Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 24, 715–726 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Ross, D. S. & Tuttle, R. M. Observing micopapillary thyroid cancers. Thyroid 24, 3–6 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Pfestroff, MD, for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.L., T.W. and F.A.V. researched data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Markus Luster.

Ethics declarations

Competing interests

M.L. declares that he has acted as a consultant for AstraZeneca, Bayer Healthcare, Genzyme and Sobi, and has received speaker honoraria and research support from Genzyme, Henning and Merck. T.W. has received research support from B. Braun-Stiftung and speaker honoraria from Genzyme. F.A.V. declares that he has acted as a consultant for Roche Healthcare and has received speaker honoraria from Genzyme.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luster, M., Weber, T. & Verburg, F. Differentiated thyroid cancer—personalized therapies to prevent overtreatment. Nat Rev Endocrinol 10, 563–574 (2014). https://doi.org/10.1038/nrendo.2014.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.100

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer