Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Short and tall stature: a new paradigm emerges

Key Points

  • Linear growth (that is, gain in height) is determined by the rate of growth plate chondrogenesis

  • Short stature is caused by decreased chondrogenesis whereas tall stature is the result of increased chondrogenesis

  • The rate of growth plate chondrogenesis is regulated by many systems, including those related to intracellular, paracrine and extracellular matrix factors, as well as endocrine mechanisms

  • Findings from the past decade have identified many new genetic defects responsible for short and tall stature that occur across the systems that regulate growth plate activity

  • Similarly, genome-wide association studies have revealed that the normal variation in height seems to be due to many genes that affect the growth plate through a variety of mechanisms

  • These new findings suggest a novel conceptual framework for understanding short and tall stature, which is centred on the growth plate—the structure responsible for height gain

Abstract

In the past, the growth hormone (GH)–insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH–IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate, which is the biological process that drives height gain. Consequently, normal growth in children depends not only on GH and IGF-1 but also on multiple hormones, paracrine factors, extracellular matrix molecules and intracellular proteins that regulate the activity of growth plate chondrocytes. Mutations in the genes that encode many of these local proteins cause short stature or tall stature. Similarly, genome-wide association studies have revealed that the normal variation in height seems to be largely due to genes outside the GH–IGF-1 axis that affect growth at the growth plate through a wide variety of mechanisms. These findings point to a new conceptual framework for understanding short and tall stature that is centred not on two particular hormones but rather on the growth plate, which is the structure responsible for height gain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human growth plate histology from an 11-year old boy.
Figure 2: Regulation of growth plate function.
Figure 3: The phenotypic spectrum caused by genetic variants in genes that regulate growth plate chondrogenesis.

Similar content being viewed by others

References

  1. Rosenfeld, R. G. The molecular basis of idiopathic short stature. Growth Horm. IGF Res. 15 (Suppl. A), S3–S5 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hindmarsh, P. C. & Brook, C. G. Short stature and growth hormone deficiency. Clin. Endocrinol. (Oxf.). 43, 133–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Zadik, Z., Chalew, S. A., Zung, A., Lieberman, E. & Kowarski, A. A. Short stature: new challenges in growth hormone therapy. J. Pediatr. Endocrinol. 6, 303–310 (1993).

    CAS  PubMed  Google Scholar 

  4. Savage, M. O., Burren, C. P. & Rosenfeld, R. G. The continuum of growth hormone-IGF-I axis defects causing short stature: diagnostic and therapeutic challenges. Clin. Endocrinol. (Oxf.). 72, 721–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Daughaday, W. H. Growth hormone axis overview–somatomedin hypothesis. Pediatr. Nephrol. 14, 537–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Furlanetto, R. W., Underwood, L. E., Van Wyk, J. J. & D'Ercole, A. J. Estimation of somatomedin-C levels in normals and patients with pituitary disease by radioimmunoassay. J. Clin. Invest. 60, 648–657 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth, J., Glick, S. M., Yalow, R. S. & Berson, S. A. The influence of blood glucose on the plasma concentration of growth hormone. Diabetes 13, 355–361 (1964).

    Article  CAS  PubMed  Google Scholar 

  8. Cooke, D. S., Divall, S. A. & Radovick, S. in Williams Textbook of Endocrinology 12th edn Ch. 24 (eds Melmed, S., Williams, R. H., Larsen, P. R. & Kronenberg, H.) 959 (Elsevier/Saunders, 2011).

    Google Scholar 

  9. Wit, J. M. et al. Idiopathic short stature: definition, epidemiology, and diagnostic evaluation. Growth Horm. IGF Res. 18, 89–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Codner, E. et al. Relationship between serum growth hormone binding protein levels and height in young men. J. Pediatr. Endocrinol. Metab. 13, 887–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gill, M. S. et al. Regular fluctuations in growth hormone (GH) release determine normal human growth. Growth Horm. IGF Res. 9, 114–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Sisley, S., Trujillo, M. V., Khoury, J. & Backeljauw, P. Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. J. Pediatr. 163, 1045–1051 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dauber, A., Rosenfeld, R. G. & Hirschhorn, J. N. Genetic evaluation of short stature. J. Clin. Endocrinol. Metab. 99, 3080–3092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanley, T. L., Levitsky, L. L., Grinspoon, S. K. & Misra, M. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. J. Clin. Endocrinol. Metab. 94, 4875–4881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marin, G. et al. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J. Clin. Endocrinol. Metab. 79, 537–541 (1994).

    CAS  PubMed  Google Scholar 

  16. Rose, S. R. et al. The advantage of measuring stimulated as compared with spontaneous growth hormone levels in the diagnosis of growth hormone deficiency. N. Engl. J. Med. 319, 201–207 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbloom, A. L. Idiopathic short stature: conundrums of definition and treatment. Int. J. Pediatr. Endocrinol. 2009, 470378 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wudy, S. A. et al. Children with idiopathic short stature are poor eaters and have decreased body mass index. Pediatrics 116, e52–e57 (2005).

    Article  PubMed  Google Scholar 

  19. Rosenbloom, A. L. Is there a role for recombinant insulin-like growth factor-I in the treatment of idiopathic short stature? Lancet 368, 612–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Olney, R. C. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J. Clin. Endocrinol. Metab. 91, 1229–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Nilsson, O., Marino, R., De Luca, F., Phillip, M. & Baron, J. Endocrine regulation of the growth plate. Horm. Res. 64, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  23. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mushtaq, T., Bijman, P., Ahmed, S. F. & Farquharson, C. Insulin-like growth factor-I augments chondrocyte hypertrophy and reverses glucocorticoid-mediated growth retardation in fetal mice metatarsal cultures. Endocrinology 145, 2478–2486 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Baron, J., Huang, Z., Oerter, K. E., Bacher, J. D. & Cutler, G. B. Jr. Dexamethasone acts locally to inhibit longitudinal bone growth in rabbits. Am. J. Physiol. 263, E489–E492 (1992).

    CAS  PubMed  Google Scholar 

  26. Rivkees, S. A., Danon, M. & Herrin, J. Prednisone dose limitation of growth hormone treatment of steroid-induced growth failure. J. Pediatr. 125, 322–325 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., Shao, Y. Y. & Ballock, R. T. Thyroid hormone interacts with the Wnt/β-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J. Bone Miner. Res. 22, 1988–1995 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Barnard, J. C. et al. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. Endocrinology 146, 5568–5580 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Raz, P., Nasatzky, E., Boyan, B. D., Ornoy, A. & Schwartz, Z. Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5-α reductase type 1. J. Cell. Biochem. 95, 108–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ren, S. G. et al. Direct administration of testosterone increases rat tibial epiphyseal growth plate width. Acta Endocrinol. 121, 401–405 (1989).

    Article  CAS  Google Scholar 

  31. Borjesson, A. E. et al. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J. Bone Miner. Res. 25, 2690–2700 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Chagin, A. S., Chrysis, D., Takigawa, M., Ritzen, E. M. & Sävendahl, L. Locally produced estrogen promotes fetal rat metatarsal bone growth; an effect mediated through increased chondrocyte proliferation and decreased apoptosis. J. Endocrinol. 188, 193–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Mazziotti, G. & Giustina, A. Glucocorticoids and the regulation of growth hormone secretion. Nat. Rev. Endocrinol. 9, 265–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Benker, G. et al. TSH secretion in Cushing's syndrome: relation to glucocorticoid excess, diabetes, goitre, and the 'sick euthyroid syndrome'. Clin. Endocrinol. 33, 777–786 (1990).

    Article  CAS  Google Scholar 

  35. Nilsson, O. et al. Evidence that estrogen hastens epiphyseal fusion and cessation of longitudinal bone growth by irreversibly depleting the number of resting zone progenitor cells in female rabbits. Endocrinology 155, 2892–2899 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Weise, M. et al. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc. Natl Acad. Sci. USA 98, 6871–6876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quaynor, S. D. et al. Delayed puberty and estrogen resistance in a woman with estrogen receptor α variant. N. Engl. J. Med. 369, 164–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  40. Dunkel, L. Update on the role of aromatase inhibitors in growth disorders. Horm. Res. 71 (Suppl. 1), 57–63 (2009).

    CAS  PubMed  Google Scholar 

  41. Wit, J. M., Hero, M. & Nunez, S. B. Aromatase inhibitors in pediatrics. Nat. Rev. Endocrinol. 8, 135–147 (2012).

    Article  CAS  Google Scholar 

  42. van der Eerden, B. C., Lowik, C. W., Wit, J. M. & Karperien, M. Expression of estrogen receptors and enzymes involved in sex steroid metabolism in the rat tibia during sexual maturation. J. Endocrinol. 180, 457–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Fernandez-Vojvodich, P., Palmblad, K., Karimian, E., Andersson, U. & Sävendahl, L. Pro-inflammatory cytokines produced by growth plate chondrocytes may act locally to modulate longitudinal bone growth. Horm. Res. Paediatr. 77, 180–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Sävendahl, L. The effect of acute and chronic stress on growth. Sci. Signal 5, 9 (2012).

    Article  Google Scholar 

  45. Sederquist, B., Fernandez-Vojvodich, P., Zaman, F. & Sävendahl, L. Impact of inflammatory cytokines on longitudinal bone growth. J. Mol. Endocrinol. 53, T35–T44 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. MacRae, V. E., Farquharson, C. & Ahmed, S. F. The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. J. Endocrinol. 189, 319–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Martensson, K., Chrysis, D. & Sävendahl, L. Interleukin-1β and TNF-α act in synergy to inhibit longitudinal growth in fetal rat metatarsal bones. J. Bone Miner. Res. 19, 1805–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Phillip, M., Moran, O. & Lazar, L. Growth without growth hormone. J. Pediatr. Endocrinol. Metab. 15 (Suppl. 5), 1267–1272 (2002).

    CAS  PubMed  Google Scholar 

  49. Couto-Silva, A. C. et al. Final height and gonad function after total body irradiation during childhood. Bone Marrow Transplant. 38, 427–432 (2006).

    Article  PubMed  Google Scholar 

  50. Stokes, I. A., Aronsson, D. D., Dimock, A. N., Cortright, V. & Beck, S. Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J. Orthop. Res. 24, 1327–1334 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stokes, I. A., Mente, P. L., Iatridis, J. C., Farnum, C. E. & Aronsson, D. D. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading. J. Bone Joint Surg. Am. 84-A, 1842–1848 (2002).

    Article  Google Scholar 

  52. Lykissas, M. G. et al. Guided growth for the treatment of limb length discrepancy: a comparative study of the three most commonly used surgical techniques. J. Pediatr. Orthop. B 22, 311–317 (2013).

    Article  PubMed  Google Scholar 

  53. Caine, D., Howe, W., Ross, W. & Bergman, G. Does repetitive physical loading inhibit radial growth in female gymnasts? Clin. J. Sport Med. 7, 302–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Hung, I. H., Yu, K., Lavine, K. J. & Ornitz, D. M. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev. Biol. 307, 300–313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lazarus, J. E., Hegde, A., Andrade, A. C., Nilsson, O. & Baron, J. Fibroblast growth factor expression in the postnatal growth plate. Bone 40, 577–586 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Z., Lavine, K. J., Hung., I. H. & Ornitz, D. M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev. Biol. 302, 80–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Mancilla, E. E., De Luca, F., Uyeda, J. A., Czerwiec, F. S. & Baron, J. Effects of fibroblast growth factor-2 on longitudinal bone growth. Endocrinology 139, 2900–2904 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. De Luca, F. et al. Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142, 430–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Nilsson, O. et al. Gradients in bone morphogenetic protein-related gene expression across the growth plate. J. Endocrinol. 193, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Pogue, R. & Lyons, K. BMP signaling in the cartilage growth plate. Curr. Top. Dev. Biol. 76, 1–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Andrade, A. C., Nilsson, O., Barnes, K. M. & Baron, J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40, 1361–1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuss, P. et al. Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A. Dev. Biol. 385, 83–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Lui, J. C., Nilsson, O. & Baron, J. Recent insights into the regulation of the growth plate. J. Mol. Endocrinol. 53, T1–T9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vajo, Z., Francomano, C. A. & Wilkin, D. J. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr. Rev. 21, 23–39 (2000).

    CAS  PubMed  Google Scholar 

  65. Kant, S. G. et al. A novel variant of FGFR3 causes proportionate short stature. Eur. J. Endocrinol. 172, 763–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Toydemir, R. M. et al. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am. J. Hum. Genet. 79, 935–941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makrythanasis, P. et al. A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly. Hum. Mutat. 35, 959–963 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Yasoda, A. et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat. Med. 10, 80–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sahni, M. et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 13, 1361–1366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baron, J. et al. Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology 135, 2790–2793 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, L. et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J. Clin. Invest. 104, 1517–1525 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M. & Vortkamp, A. Interaction of FGF Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Foldynova-Trantirkova, S., Wilcox, W. R. & Krejci, P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum. Mutat. 33, 29–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Xie, Y., Zhou, S., Chen, H., Du, X. & Chen, L. Recent research on the growth plate: advances in fibroblast growth factor signaling in growth plate development and disorders. J. Mol. Endocrinol. 53, T11–T34 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Klopocki, E. et al. Deletion and point mutations of PTHLH cause brachydactyly type E. Am. J. Hum. Genet. 86, 434–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chusho, H. et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc. Natl Acad. Sci. USA 98, 4016–4021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mericq, V., Uyeda, J. A., Barnes, K. M., De Luca, F. & Baron, J. Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatr. Res. 47, 189–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Pejchalova, K., Krejci, P. & Wilcox, W. R. C-natriuretic peptide: an important regulator of cartilage. Mol. Genet. Metab. 92, 210–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Bartels, C. F. et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet. 75, 27–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amano, N. et al. Identification and functional characterization of two novel NPR2 mutations in Japanese patients with short stature. J. Clin. Endocrinol. Metab. 99, E713–E718 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Vasques, G. A. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J. Clin. Endocrinol. Metab. 98, E1636–E1644 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S. R. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. Hum. Mutat. 36, 474–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bocciardi, R. et al. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum. Mutat. 28, 724–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Moncla, A. et al. A cluster of translocation breakpoints in 2q37 is associated with overexpression of NPPC in patients with a similar overgrowth phenotype. Hum. Mutat. 28, 1183–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Hannema, S. E. et al. An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities. J. Clin. Endocrinol. Metab. 98, E1988–E1998 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Miura, K. et al. Overgrowth syndrome associated with a gain-of-function mutation of the natriuretic peptide receptor 2 (NPR2) gene. Am. J. Med. Genet. A 164A, 156–163 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Teixeira, C. C., Agoston, H. & Beier, F. Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification. Dev. Biol. 319, 171–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miyazawa, T. et al. Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology 143, 3604–3610 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Krejci, P. et al. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J. Cell Sci. 118, 5089–5100 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Yasoda, A. et al. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 150, 3138–3144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Neptune, E. R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dietz, H. C. & Pyeritz, R. E. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum. Mol. Genet. 4, 1799–1809 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Jochmann, K., Bachvarova, V. & Vortkamp, A. Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol. 35, 239–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Warman, M. L. et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat. Genet. 5, 79–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Tompson, S. W. et al. A recessive skeletal dysplasia, SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan. Am. J. Hum. Genet. 84, 72–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gleghorn, L., Ramesar, R., Beighton, P. & Wallis, G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77, 484–490 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stattin, E. L. et al. A missense mutation in the aggrecan C-type lectin domain disrupts extracellular matrix interactions and causes dominant familial osteochondritis dissecans. Am. J. Hum. Genet. 86, 126–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nilsson, O. et al. Short stature, accelerated bone maturation, and early growth cessation due to heterozygous aggrecan mutations. J. Clin. Endocrinol. Metab. 99, E1510–E1518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lauing, K. L. et al. Aggrecan is required for growth plate cytoarchitecture and differentiation. Dev. Biol. 396, 224–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watanabe, H. & Yamada, Y. Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj. J. 19, 269–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Xu, T. et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat. Genet. 20, 78–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Cain, S. A., McGovern, A., Baldwin, A. K., Baldock, C. & Kielty, C. M. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions. PLoS ONE 7, e48634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Akiyama, H. & Lefebvre, V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J. Bone Miner. Metab. 29, 390–395 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Marchini, A. et al. The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. J. Biol. Chem. 279, 37103–37114 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Malaquias, A. C. et al. The sitting height/height ratio for age in healthy and short individuals and its potential role in selecting short children for SHOX analysis. Horm. Res. Paediatr. 80, 449–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Binder, G. Short stature due to SHOX deficiency: genotype, phenotype, and therapy. Horm. Res. Paediatr. 75, 81–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Ottesen, A. M. et al. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am. J. Med. Genet. A 152A, 1206–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cseh, B., Doma, E. & Baccarini, M. “RAF” neighborhood: Protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett. 588, 2398–2406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, B. H. Spectrum of mutations in Noonan syndrome and their correlation with phenotypes. J. Pediatr. 159, 1029–1035 (2011).

    Article  PubMed  Google Scholar 

  112. Stevenson, D. A. & Yang, F. C. The musculoskeletal phenotype of the RASopathies. Am. J. Med. Genet. C Semin. Med. Genet. 157C, 190–103 (2011).

    Google Scholar 

  113. Visser, R., Kant, S. G., Wit, J. M. & Breuning, M. H. Overgrowth syndromes:from classical to new. Pediatr. Endocrinol. Rev. 6, 375–394 (2009).

    PubMed  Google Scholar 

  114. Wu, S., Fadoju, D., Rezvani, G. & De Luca, F. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-κB p65. J. Biol. Chem. 283, 34037–34044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, S. et al. Growth hormone and insulin-like growth factor I insensitivity of fibroblasts isolated from a patient with an IκBα mutation. J. Clin. Endocrinol. Metab. 95, 1220–1228 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Klingseisen, A. & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huber, C. et al. Identification of mutations in CUL7 in 3-M syndrome. Nat. Genet. 37, 1119–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Hanson, D. et al. The primordial growth disorder 3-M syndrome connects ubiquitination to the cytoskeletal adaptor OBSL1. Am. J. Hum. Genet. 84, 801–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hanson, D. et al. Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth. Am. J. Hum. Genet. 89, 148–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yan, J. et al. The 3M complex maintains microtubule and genome integrity. Mol. Cell 54, 791–804 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rauch, A. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319, 816–819 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Bicknell, L. S. et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet. 43, 356–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guernsey, D. L. et al. Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat. Genet. 43, 360–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Knoch, J., Kamenisch, Y., Kubisch, C. & Berneburg, M. Rare hereditary diseases with defects in DNA-repair. Eur. J. Dermatol. 22, 443–455 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gibson, W. T. et al. Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90, 110–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Canton, A. P. et al. Genome-wide screening of copy number variants in children born small for gestational age reveals several candidate genes involved in growth pathways. Eur. J. Endocrinol. 171, 253–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. van Duyvenvoorde, H. A. et al. Copy number variants in patients with short stature. Eur. J. Hum. Genet. 22, 602–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Zahnleiter, D. et al. Rare copy number variants are a common cause of short stature. PLoS Genet. 9, e1003365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lui, J. C. et al. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum. Mol. Genet. 21, 5193–5201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, F. et al. Common DNA variants predict tall stature in Europeans. Hum. Genet. 133, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Wit, J. M., Ranke, M. B. & Kelnar, C. J. H. The ESPE classification of paediatric endocrine diagnoses. Horm. Res. 68 (Suppl. 2), 1–120 (2007).

    Google Scholar 

  134. Chitty, L. S. et al. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet. Gynecol. 37, 283–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Chitty, L. S. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat. Diagn. 33, 416–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Bober, M. B., Bellus, G. A., Nikkel, S. M. & Tiller, G. E. Hypochondroplasia. GeneReviews®[online], (1999).

    Google Scholar 

  137. Cohen, M. M. Jr. Some chondrodysplasias with short limbs: molecular perspectives. Am. J. Med. Genet. 112, 304–313 (2002).

    Article  PubMed  Google Scholar 

  138. Miyake, N. et al. PAPSS2 mutations cause autosomal recessive brachyolmia. J. Med. Genet. 49, 533–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Oostdijk, W. et al. PAPSS2 deficiency causes androgen excess via impaired DHEA sulfation—in vitro and in vivo studies in a family harboring two novel PAPSS2 mutations. J. Clin. Endocrinol. Metab. 100, E672–E680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Roberts, A. E., Allanson, J. E., Tartaglia, M. & Gelb, B. D. Noonan syndrome. Lancet 381, 333–342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, S. R. et al. Large-scale pooled next-generation sequencing of 1077 genes to identify genetic causes of short stature. J. Clin. Endocrinol. Metab. 98, E1428–E1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Blum, W. F. et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: Two-year results of a randomized, controlled, multicenter trial. J. Clin. Endocrinol. Metab. 92, 219–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Noordam, C., Van der Burgt, I., Sengers, R. C., Delemarre-van de Waal, H. A. & Otten, B. J. Growth hormone treatment in children with Noonan's syndrome: four year results of a partly controlled trial. Acta Paediatr. 90, 889–894 (2001).

    CAS  PubMed  Google Scholar 

  144. Albertsson-Wikland, K. et al. Dose-dependent effect of growth hormone on final height in children with short stature without growth hormone deficiency. J. Clin. Endocrinol. Metab. 93, 4342–4350 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Leschek, E. W. et al. Effect of growth hormone treatment on adult height in peripubertal children with idiopathic short stature: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 3140–3148 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Trivellin, G. et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N. Engl. J. Med. 371, 2363–2374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hunziker, E. B., Wagner, J. & Zapf, J. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J. Clin. Invest. 93, 1078–1086 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nilsson, O. et al. Growth plate senescence is associated with loss of DNA methylation. J. Endocrinol. 186, 241–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, J., Zhou, J., Cheng, C. M., Kopchick, J. J. & Bondy, C. A. Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J. Endocrinol. 180, 247–255 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.B., F.D.L., A.D., J.M.W. and O.N. researched data for the article, made substantial contributions to discussion of the content, wrote the article and reviewed/edited the manuscript before submission. L.S. made substantial contributions to discussion of the content, wrote the article and reviewed/edited the manuscript before submission. M.P. made substantial contributions to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Jeffrey Baron.

Ethics declarations

Competing interests

J.B. is listed as a co-inventor on a patent application by the NIH for targeted treatment of cartilage disorders. L.S. has received speakers' honoraria and/or research support from Ferring, Merck Serono, Novo Nordisk and Pfizer, and has submitted a patent application for novel peptides to treat bone or cartilage disorders and other diseases. A.D. has been a faculty speaker at continuing medical education symposia sponsored by Ipsen, Novo Nordisk and Sandoz. M.P. has received research support from Novo Nordisk, Pfizer and Teva, personal fees from Novo Nordisk and is a director of NG Solutions. J.M.W. has served as a consultant for Ammonett, Biopartners, Merck Serono, OPKO, Pfizer, Teva and Versartis, and has received speakers' honoraria from Lilly, Merck Serono, Pfizer, Sandoz and Versartis. O.N. has received a European Society for Paediatric Endocrinology research fellowship sponsored by Novo Nordisk and speaker's honoraria from Lilly. F.D.L. has no competing interests to declare.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, J., Sävendahl, L., De Luca, F. et al. Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol 11, 735–746 (2015). https://doi.org/10.1038/nrendo.2015.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing