Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiopoietin-like 3 in lipoprotein metabolism

Key Points

  • Angiopoietin-like 3 (ANGPTL3) is a liver-derived circulating factor that inhibits the enzyme lipoprotein lipase

  • ANGPTL3 works in tandem with its close relative ANGPTL8

  • Loss-of-function mutations in ANGPTL3 are associated with reductions in plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein cholesterol and triglycerides in humans

  • Antisense oligonucleotide- and antibody-based targeting of ANGPTL3 lowers plasma triglycerides and LDL cholesterol in humans

Abstract

Triglycerides and cholesterol circulate in the bloodstream as part of various lipoprotein particles. Three members of the angiopoietin-like (ANGPTL) protein family — ANGPTL3, ANGPTL4 and ANGPTL8 — have emerged as important regulators of plasma lipoprotein levels by inhibiting the enzyme lipoprotein lipase. Here, I review the role of ANGPTL3 in lipoprotein metabolism. In contrast to ANGPTL4 and ANGPTL8, ANGPTL3 is exclusively produced in the liver and can therefore be classified as a true hepatokine. ANGPTL3 cooperates with ANGPTL8 to inhibit lipoprotein lipase and is mostly active after feeding, whereas ANGPTL4 is mostly active after fasting. Inactivation of ANGPTL3 in mice reduces plasma triglyceride and free fatty acid levels and suppresses atherosclerosis. In humans, homozygous loss-of-function mutations in ANGPTL3 lead to low plasma levels of low-density lipoproteins, high-density lipoproteins and triglycerides, a condition referred to as familial combined hypolipidaemia. Heterozygous carriers of loss-of-function mutations in ANGPTL3 have a lower risk of coronary artery disease than non-carriers. At present, researchers are investigating antisense oligonucleotide and monoclonal antibody-based inactivation of ANGPTL3 in human clinical trials for the therapeutic management of dyslipidaemia and atherosclerosis. Thus, ANGPTL3 is an important liver-derived regulator of lipoprotein metabolism that holds considerable promise as a target for atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of ANGPTL3 combined with the location of loss-of-function mutations.
Figure 2: Overview of the role of ANGPTL3 in plasma triglyceride metabolism.
Figure 3: Hypothetical model of the role of ANGPTL3 in plasma triglyceride metabolism.

Similar content being viewed by others

References

  1. Bonanni, L., Cutolo, A. & Dalla Vestra, M. Novel approaches for the treatment of familial hypercholesterolemia. Exp. Clin. Endocrinol. Diabetes 124, 583–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Banach, M. et al. Statin intolerance — an attempt at a unified definition. Position paper from an international lipid expert panel. Expert Opin. Drug Saf. 14, 935–955 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Orringer, C. E. et al. Update on the use of PCSK9 inhibitors in adults: recommendations from an expert panel of the National Lipid Association. J. Clin. Lipidol. 4, 880–890 (2017).

    Article  Google Scholar 

  4. Mattijssen, F. & Kersten, S. Regulation of triglyceride metabolism by angiopoietin-like proteins. Biochim. Biophys. Acta 1821, 782–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Conklin, D. et al. Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62, 477–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Shimamura, M. et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27, 366–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zandbergen, F., van Dijk, S., Muller, M. & Kersten, S. Fasting-induced adipose factor/angiopoietin-like protein 4: a potential target for dyslipidemia. Future Lipidol. 1, 227–236 (2006).

    Article  CAS  Google Scholar 

  10. Catoire, M. et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc. Natl. Acad. Sci. USA 111, E1043–E1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dijk, W. et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife 4, e08428 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kersten, S. et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem. 275, 28488–28493 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kroupa, O. et al. Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC Physiol. 12, 13 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sukonina, V., Lookene, A., Olivecrona, T. & Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103, 17450–17455 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Desai, U. et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc. Natl Acad. Sci. USA 104, 11766–11771 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lichtenstein, L. et al. Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 12, 580–592 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Quagliarini, F. et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl Acad. Sci. USA 109, 19751–19756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren, G., Kim, J. Y. & Smas, C. M. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E334–E351 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang, R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424, 786–792 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Cox, A. R. et al. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia 58, 1523–1531 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gusarova, V. et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159, 691–696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jiao, Y., Le Lay, J., Yu, M., Naji, A. & Kaestner, K. H. Elevated mouse hepatic betatrophin expression does not increase human beta-cell replication in the transplant setting. Diabetes 63, 1283–1288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yi, P., Park, J. S. & Melton, D. A. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153, 747–758 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yi, P., Park, J. S. & Melton, D. A. Retraction notice to: Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 168, 326 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Dewey, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Graham, M. J. et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377, 222–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Koishi, R. et al. Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30, 151–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fu, Z., Yao, F., Abou-Samra, A. B. & Zhang, R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem. Biophys. Res. Commun. 430, 1126–1131 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, W. et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 6, 129–136 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ono, M. et al. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J. Biol. Chem. 278, 41804–41809 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Essalmani, R. et al. Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes. J. Biol. Chem. 288, 26410–26418 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Khetarpal, S. A. et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. Cell Metab. 24, 234–245 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schjoldager, K. T. et al. O-Glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids. J. Biol. Chem. 285, 36293–36303 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119, 70–79 (2009).

    CAS  PubMed  Google Scholar 

  35. Liu, J. et al. A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatr. Res. 77, 732–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan, R. et al. Regulation of the angiopoietin-like protein 3 gene by LXR. J. Lipid Res. 44, 136–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ge, H. et al. Differential regulation and properties of angiopoietin-like proteins 3 and 4. J. Lipid Res. 46, 1484–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Inaba, T. et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278, 21344–21351 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Fugier, C. et al. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J. Biol. Chem. 281, 11553–11559 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Inukai, K. et al. ANGPTL3 is increased in both insulin-deficient and -resistant diabetic states. Biochem. Biophys. Res. Commun. 317, 1075–1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, B., Moser, A., Shigenaga, J. K., Grunfeld, C. & Feingold, K. R. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem. Biophys. Res. Commun. 391, 1737–1741 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Matsusue, K., Miyoshi, A., Yamano, S. & Gonzalez, F. J. Ligand-activated PPARβ efficiently represses the induction of LXR-dependent promoter activity through competition with RXR. Mol. Cell. Endocrinol. 256, 23–33 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shimamura, M. et al. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 301, 604–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Pramfalk, C., Parini, P., Gustafsson, U., Sahlin, S. & Eriksson, M. Effects of high-dose statin on the human hepatic expression of genes involved in carbohydrate and triglyceride metabolism. J. Intern. Med. 269, 333–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Tikka, A. et al. Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci. Rep. 34, e00160 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nidhina Haridas, P. A. et al. Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin. J. Clin. Endocrinol. Metab. 100, E1299–E1307 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Ando, Y. et al. A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J. Lipid Res. 44, 1216–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fujimoto, K., Koishi, R., Shimizugawa, T. & Ando, Y. Angptl3-null mice show low plasma lipid concentrations by enhanced lipoprotein lipase activity. Exp. Anim. 55, 27–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Koster, A. et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146, 4943–4950 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y. et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl Acad. Sci. USA 112, 11630–11635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gusarova, V. et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56, 1308–1317 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang, Y. et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res. 56, 1296–1307 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Shimizugawa, T. et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277, 33742–33748 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, E.-C. et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J. Biol. Chem. 284, 13735–13745 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Shan, L. et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J. Biol. Chem. 284, 1419–1424 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Sonnenburg, W. K. et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J. Lipid Res. 50, 2421–2429 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yau, M. H. et al. A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J. Biol. Chem. 284, 11942–11952 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chi, X. et al. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab. http://dx.doi.org/10.1016/j.molmet.2017.06.014 (2017).

  59. Haller, J. F. et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res. 58, 1166–1173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mysling, S. et al. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife 5, e20958 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dijk, W. et al. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J. Lipid Res. 57, 1670–1683 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285, 27561–27570 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang, Y. et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl Acad. Sci. USA 110, 16109–16114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Minicocci, I. et al. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism. J. Lipid Res. 57, 1097–1107 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Martin-Campos, J. M. et al. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta 413, 552–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Noto, D. et al. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol. 32, 805–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Pisciotta, L. et al. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ. Cardiovasc. Genet. 5, 42–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Fazio, S. et al. A form of familial hypobetalipoproteinaemia not due to a mutation in the apolipoprotein B gene. J. Intern. Med. 229, 41–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Minicocci, I. et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97, E1266–E1275 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Robciuc, M. R. et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. Vasc. Biol. 33, 1706–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Minicocci, I. et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J. Lipid Res. 54, 3481–3490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mehta, N. et al. Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits. Arterioscler. Thromb. Vasc. Biol. 34, 1057–1063 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Robciuc, M. R., Tahvanainen, E., Jauhiainen, M. & Ehnholm, C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J. Lipid Res. 51, 824–831 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Musunuru, K. & Kathiresan, S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ. Res. 118, 579–585 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Stitziel, N. O. et al. ANGPTL3 deficiency and protection against coronary artery disease. J. Am. Coll. Cardiol. 69, 2054–2063 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang, C. C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Camenisch, G. et al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin αvβ3 and induces blood vessel formation in vivo. J. Biol. Chem. 277, 17281–17290 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by grants from the Fondation Leducq (12CVD04), the Netherlands Cardiovascular Research Committee (IN-CONTROL, CVON 2012–03), the Netherlands Organisation for Scientific Research (NWO-ALW 824.14.008) and by the Graduate School VLAG (Wageningen University).

Author information

Authors and Affiliations

Authors

Contributions

S.K. researched data for the article, wrote the Review and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sander Kersten.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

O-Glycosylation

The attachment of a sugar molecule to an oxygen atom in an amino acid residue in a protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol 13, 731–739 (2017). https://doi.org/10.1038/nrendo.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing