Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FGF1 — a new weapon to control type 2 diabetes mellitus

Key Points

  • Peripherally or centrally injected fibroblast growth factor 1 (FGF1) confers potent metabolic benefits in type 2 diabetes mellitus (T2DM)

  • FGF1 produced by ependymal cells of the central nervous system interacts with tanycytes, astrocytes and glucose-sensing neurons of the hypothalamus to influence feeding and glycaemic control

  • Functional recovery of hypothalamic glucose-sensing neurons, as well as neural regeneration and synaptic plasticity, might be fundamental in achieving sustained remission of T2DM

  • FGF1 has the potential to improve glycaemic control, in addition to microvascular and macrovascular complications, in patients with T2DM

Abstract

A hypercaloric diet combined with a sedentary lifestyle is a major risk factor for the development of insulin resistance, type 2 diabetes mellitus (T2DM) and associated comorbidities. Standard treatment for T2DM begins with lifestyle modification, and includes oral medications and insulin therapy to compensate for progressive β-cell failure. However, current pharmaceutical options for T2DM are limited in that they do not maintain stable, durable glucose control without the need for treatment intensification. Furthermore, each medication is associated with adverse effects, which range from hypoglycaemia to weight gain or bone loss. Unexpectedly, fibroblast growth factor 1 (FGF1) and its low mitogenic variants have emerged as potentially safe candidates for restoring euglycaemia, without causing overt adverse effects. In particular, a single peripheral injection of FGF1 can lower glucose to normal levels within hours, without the risk of hypoglycaemia. Similarly, a single intracerebroventricular injection of FGF1 can induce long-lasting remission of the diabetic phenotype. This Review discusses potential mechanisms by which centrally administered FGF1 improves central glucose-sensing and peripheral glucose uptake in a sustained manner. Specifically, we explore the potential crosstalk between FGF1 and glucose-sensing neuronal circuits, hypothalamic neural stem cells and synaptic plasticity. Finally, we highlight therapeutic considerations of FGF1 and compare its metabolic actions with FGF15 (rodents), FGF19 (humans) and FGF21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unique and shared properties of central and peripheral injections of FGF1.
Figure 2: Mechanisms potentially engaged by FGF1 after central injection.

Similar content being viewed by others

References

  1. World Health Organization. Global report on diabetes. WHO http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf (2016).

  2. Jaacks, L. M., Siegel, K. R., Gujral, U. P. & Narayan, K. M. Type 2 diabetes: a 21 st century epidemic. Best Pract. Res. Clin. Endocrinol. Metab. 30, 331–343 (2016).

    Article  PubMed  Google Scholar 

  3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  4. Nathan, D. M. Diabetes: advances in diagnosis and treatment. JAMA 314, 1052–1062 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Cuddihy, R. M., Philis-Tsimikas, A. & Nazeri, A. Type 2 diabetes care and insulin intensification. Diabetes Educ. 37, 111–123 (2011).

    Article  PubMed  Google Scholar 

  6. Itoh, N., Nakayama, Y. & Konishi, M. Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease. Front. Cell Dev. Biol. 4, 31 (2016).

    Google Scholar 

  7. Powers, C. J., McLeskey, S. W. & Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Suh, J. M. et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439 (2014). This seminal study established FGF1 as a formidable glucose regulator and insulin sensitizer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016). This study showed that central injection of FGF1 induces durable diabetes remission.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Oomura, Y. et al. A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55, 278S–282S (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Hanai, K. et al. Central action of acidic fibroblast growth factor in feeding regulation. Am. J. Physiol. 256, R217–R223 (1989). This work provided initial evidence of the role of FGF1 in feeding behavior.

    CAS  PubMed  Google Scholar 

  12. Sasaki, K. et al. Effects of fibroblast growth factors and platelet-derived growth factor on food intake in rats. Brain Res. Bull. 27, 327–332 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. De Saint Hilaire, Z. & Nicolaïdis, S. Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats. Brain Res. Bull. 29, 525–528 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Itoh, N. & Ornitz, D. M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tooyama, I. et al. Production of antisera to acidic fibroblast growth factor and their application to immunohistochemical study in rat brain. Neuroscience 40, 769–779 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Fallon, J. H. et al. Localization of acidic fibroblast growth factor within the mouse brain using biochemical and immunocytochemical techniques. Growth Factors 6, 139–157 (2009).

    Article  Google Scholar 

  18. Chen, M. S. et al. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B–GFP transgenic mice. Dev. Neurobiol. 75, 232–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki, S. et al. Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes. Eur. J. Neurosci. 13, 2299–2308 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, S., Li, A.-J., Akaike, T. & Imamura, T. Intracerebroventricular infusion of fibroblast growth factor-1 increases Fos immunoreactivity in periventricular astrocytes in rat hypothalamus. Neurosci. Lett. 300, 29–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Matsuo, A. et al. Immunohistochemical localization in the rat brain of an epitope corresponding to the fibroblast growth factor receptor-1. Neuroscience 60, 49–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez, A. M., Berry, M., Maher, P. A., Logan, A. & Baird, A. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 701, 201–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson, I. A. & Johnson, E. M. Fibroblast growth factor receptor-bearing neurons in the CNS: Identification by receptor-mediated retrograde transport. J. Comparative Neurol. 313, 693–706 (1991).

    Article  CAS  Google Scholar 

  24. Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, L., Qi, Y. & Yang, Y. Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep. 11, 798–807 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Sweeney, P., Qi, Y., Xu, Z. & Yang, Y. Activation of hypothalamic astrocytes suppresses feeding without altering emotional states. Glia 64, 2263–2273 (2016).

    Article  PubMed  Google Scholar 

  28. Stuber, G. D. & Wise, R. A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19, 198–205 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sasaki, K. et al. Actions of acidic fibroblast growth factor fragments on food intake in rats. Obesity 3, 697S–706S (1995).

    Article  CAS  Google Scholar 

  30. Jonker, J. W. et al. A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394 (2012). This study reported the discovery of FGF1 as a metabolically active peptide in association with the nuclear hormone receptor PPAR γ.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Perry, R. J. et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Commun. 6, 6980 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Perry, R. J. et al. Leptin reverses diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Med. 20, 759–763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Morton, G. J., Meek, T. H., Matsen, M. E. & Schwartz, M. W. Evidence against hypothalamic–pituitary–adrenal axis suppression in the antidiabetic action of leptin. J. Clin. Invest. 125, 4587–4591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin, X. et al. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation. Sci. Rep. 6, 36474 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sarabipour, S. & Hristova, K. Mechanism of FGF receptor dimerization and activation. Nat. Commun. 7, 10262 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bernard, C. Leçons de physiologie expérimentale appliquée à la médecine (J. B. Baillière et fils, 1855).

    Google Scholar 

  37. Mayer, J. Glucostatic mechanism of regulation of food intake. N. Engl. J. Med. 249, 13–16 (1953).

    Article  CAS  PubMed  Google Scholar 

  38. Anand, B. K., Chhina, G. S., Sharma, K. N., Dua, S. & Singh, B. Activity of single neurons in the hypothalamic feeding centers: effect of glucose. Am. J. Physiol. 207, 1146–1154 (1964).

    Article  CAS  PubMed  Google Scholar 

  39. Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222, 282–284 (1969).

    Article  CAS  PubMed  Google Scholar 

  40. Steinbusch, L., Labouèbe, G. & Thorens, B. Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol. Metab. 26, 455–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Marty, N., Dallaporta, M. & Thorens, B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 22, 241–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Jordan, S. D., Könner, A. C. & Brüning, J. C. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67, 3255–3273 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z. & Zhou, C. Hypothalamic glucose sensing: making ends meet. Front. Syst. Neurosci. 8, 402 (2014).

    Article  Google Scholar 

  44. Silver, I. A. & Ereciñska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 5068–5076 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dunn-Meynell, A. A., Routh, V. H., Kang, L., Gaspers, L. & Levin, B. E. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 51, 2056–2065 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Schuit, F. C., Huypens, P., Heimberg, H. & Pipeleers, D. G. Glucose sensing in pancreatic β-cells. Diabetes 50, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Parton, L. E. et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449, 228–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kong, D. et al. Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 12, 545–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Fioramonti, X., Lorsignol, A., Taupignon, A. & Pénicaud, L. A. New ATP-sensitive K+ channel–independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus. Diabetes 53, 2767–2775 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ren, X. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3, 12 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Murphy, B. A., Fakira, K. A., Song, Z., Beuve, A. & Routh, V. H. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am. J. Physiol., Cell Physiol. 297, C750–758 (2009).

    Article  CAS  Google Scholar 

  52. Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N. & Routh, V. H. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 50, 2673–2681 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. González, J. A., Jensen, L. T., Fugger, L. & Burdakov, D. Metabolism-independent sugar sensing in central orexin neurons. Diabetes 57, 2569–2576 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chan, O. & Sherwin, R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol. Metab. 24, 616–624 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Kang, L. et al. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 55, 412–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Meek, T. H. et al. Functional identification of a neurocircuit regulating blood glucose. Proc. Natl Acad. Sci. USA 113, E2073–E2082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verberne, T., Sabetghadam, A. & Korim, W. Neural pathways that control the glucose counterregulatory response. Front. Neurosci. 8, 38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sprague, J. E. & Arbeláez, A. M. Glucose counterregulatory responses to hypoglycemia. Pediatr. Endocrinol. Rev. 9, 463–473 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Burdakov, D. et al. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50, 711–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Burdakov, D., Gerasimenko, O. & Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J. Neurosci. 25, 2429–2433 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lu, X.-Y., Bagnol, D., Burke, S., Akil, H. & Watson, S. J. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Hormones Behav. 37, 335–344 (2000).

    Article  CAS  Google Scholar 

  63. Berthoud, H.-R. & Münzberg, H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol. Behav. 104, 29–39 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shiuchi, T. et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Yi, C.-X. et al. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bolborea, M. & Dale, N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 36, 91–100 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Goodman, T. & Hajihosseini, M. K. Hypothalamic tanycytes — masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front. Neurosci. 9, 995 (2015).

    Article  Google Scholar 

  68. Rizzoti, K. & Lovell-Badge, R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol. Cell. Endocrinol. 445, 7–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Dale, N. Purinergic signaling in hypothalamic tanycytes: potential roles in chemosensing. Semin. Cell Dev. Biol. 22, 237–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Frayling, C., Britton, R. & Dale, N. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. (Lond.) 589, 2275–2286 (2011).

    Article  CAS  Google Scholar 

  71. Haan, N. et al. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J. Neurosci. 33, 6170–6180 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Robins, S. C. et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 4, 2049 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Kokoeva, M. V., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679–683 (2005). This work was the first to suggest a role of hypothalamic neurogenesis in the maintenance of energy homeostasis.

    Article  CAS  PubMed  Google Scholar 

  74. Pak, T., Yoo, S., Miranda-Angulo, A. M., Wang, H. & Blackshaw, S. Rax-CreERT2 knock-in mice: A tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS ONE 9, e90381 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cai, D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol. Metab. 24, 40–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate, a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 14, 999–1012 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Moraes, J. C. et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS ONE 4, e5045 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pierce, A. A. & Xu, A. W. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J. Neurosci. 30, 723–730 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. McNay, D. E. G., Briançon, N., Kokoeva, M. V., Maratos-Flier, E. & Flier, J. S. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J. Clin. Invest. 122, 142–152 (2012). This study highlighted the negative impact of DIO on remodelling processes within the ARC.

    Article  CAS  PubMed  Google Scholar 

  83. Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012). This study identified tanycytes located within the median eminence as a potential source of hypothalamic progenitor cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pérez Martín, M. et al. IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur. J. Neurosci. 31, 1533–1548 (2010).

  85. Czupryn, A. et al. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334, 1133–1137 (2011). This study showed the functional integration of transplanted LepR-expressing progenitor neurons in hypothalamic circuits of db/db mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sternson, S. M. Neuron transplantation partially reverses an obesity disorder in mice. Cell Metab. 15, 133–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2007).

    Article  PubMed  Google Scholar 

  89. Dietrich, M. O. & Horvath, T. L. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Zeltser, L. M., Seeley, R. J. & Tschöp, M. H. Synaptic plasticity in neuronal circuits regulating energy balance. Nat. Neurosci. 15, 1336–1342 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Horvath, T. L. & Gao, X.-B. Input organization and plasticity of hypocretin neurons. Cell Metab. 1, 279–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Horvath, T. L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14875–14880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Benani, A. et al. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J. Neurosci. 32, 11970–11979 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Toda, C. et al. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164, 872–883 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Dietrich, M. O., Liu, Z.-W. & Horvath, T. L. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188–199 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Andrews, Z. B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011). This study showed that the effect of ghrelin on neuronal activity persists for hours after removal of the initial stimulus and proposed the existence of a physiological memory in these neurocircuits through the engagement of positive feedback loops.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Theodosis, D. T., Poulain, D. A. & Oliet, S. H. R. Activity-dependent structural and functional plasticity of astrocyte–neuron interactions. Physiol. Rev. 88, 983–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. García-Cáceres, C., Fuente-Martín, E., Argente, J. & Chowen, J. A. Emerging role of glial cells in the control of body weight. Mol. Metab. 1, 37–46 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Dietrich, M. O. & Horvath, T. L. Synaptic plasticity of feeding circuits: hormones and hysteresis. Cell 146, 863–865 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Fuente-Martín, E. et al. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900–3913 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Fagan, A. M. et al. Endogenous FGF-2 is important for cholinergic sprouting in the denervated hippocampus. J. Neurosci. 17, 2499–2511 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Terlau, H. & Seifert, W. Fibroblast growth factor enhances long-term potentiation in the hippocampal slice. Eur. J. Neurosci. 2, 973–977 (1990).

    Article  PubMed  Google Scholar 

  109. Flajolet, M. et al. FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nat. Neurosci. 11, 1402–1409 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Könner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Hill, J. W. et al. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 150, 4874–4882 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Könner, A. C. et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 13, 720–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Filippi, B. M., Yang, C. S., Tang, C. & Lam, T. K. T. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 16, 500–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Klöckener, T. et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14, 911–918 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Vogt, M. C. & Brüning, J. C. CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol. Metab. 24, 76–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Blázquez, E., Velázquez, E., Hurtado-Carneiro, V. & Ruiz-Albusac, J. M. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front. Endocrinol. (Lausanne) 5, 161 (2014).

    Article  Google Scholar 

  117. De Felice, F. G. & Ferreira, S. T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272 (2014).

    Article  PubMed  Google Scholar 

  118. Cryer, P. E. The barrier of hypoglycemia in diabetes. Diabetes 57, 3169–3176 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Scarlett, J. M. & Schwartz, M. W. Gut–brain mechanisms controlling glucose homeostasis. F1000Prime Rep. 7, 12 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Minokoshi, Y., Okano, Y. & Shimazu, T. Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 649, 343–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Fujikawa, T. et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 18, 431–444 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. German, J. P. et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152, 394–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Breen, D. M., Rasmussen, B. A., Côté, C. D., Jackson, V. M. & Lam, T. K. T. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes 62, 3005–3013 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cherrington, A. D. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 48, 1198–1214 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Grayson, B. E., Seeley, R. J. & Sandoval, D. A. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat. Rev. Neurosci. 14, 24–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Cardin, S. et al. Portal glucose infusion increases hepatic glycogen deposition in conscious unrestrained rats. J. Appl. Physiol. 87, 1470–1475 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Moore, M. C. et al. Neural and pancreatic influences on net hepatic glucose uptake and glycogen synthesis. Am. J. Physiol. 271, E215–E222 (1996).

    CAS  PubMed  Google Scholar 

  129. Kirov, A. et al. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS ONE 7, e36485 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Buehler, A. et al. Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc. Res. 55, 768–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Fernandez, B. et al. Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ. Res. 87, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2016).

    Article  CAS  Google Scholar 

  133. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor ß-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969 (1997).

    CAS  PubMed  Google Scholar 

  135. Wu, A.-L. et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl Med. 3, 113ra126 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Degirolamo, C., Sabbà, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15, 51–69 (2016). This review provided a concise summary of the physiological roles of FGF19 and FGF21, and listed how these are being translated into clinical applications.

    Article  CAS  PubMed  Google Scholar 

  137. Spielberger, R. et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N. Engl. J. Med. 351, 2590–2598 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Chae, Y. K. et al. Fibroblast growth factor receptor (FGFR) as a therapeutic target in lung and head and neck cancer. Am. J. Hematol. Oncol. 12, 13–19 (2016).

    Google Scholar 

  139. Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 37, 1081–1096 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest. 123, 4799–4808 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    Article  PubMed  CAS  Google Scholar 

  143. Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3, 19–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Fu, L. et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145, 2594–2603 (2004).

    Article  PubMed  CAS  Google Scholar 

  145. Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sarruf, D. A. et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59, 1817–1824 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Nicholes, K. et al. A mouse model of hepatocellular carcinoma. Am. J. Pathol. 160, 2295–2307 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Wu, X. et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl Acad. Sci. USA 107, 14158–14163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lou, G. et al. Intranasal administration of TAT-haFGF14–154 attenuates disease progression in a mouse model of Alzheimer's disease. Neuroscience 223, 225–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, Y. et al. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia–reperfusion injury in rats. J. Cell. Mol. Med. 14, 1998–2005 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Cheng, X. et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol. Res. 33, 675–680 (2013).

    Article  CAS  Google Scholar 

  153. Lipska, K. J. & Krumholz, H. M. Is hemoglobin A1c the right outcome for studies of diabetes? JAMA 317, 1017–1018 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Avogaro, A., Fadini, G. P., Sesti, G., Bonora, E. & Prato, S. Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice. Cardiovasc. Diabetol. 15, 111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Boussageon, R. et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343, d4169 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Marcovecchio, M. L., Lucantoni, M. & Chiarelli, F. Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabetes Technol. Ther. 13, 389–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Monnier, L. & Colette, C. Postprandial and basal hyperglycaemia in type 2 diabetes: contributions to overall glucose exposure and diabetic complications. Diabetes Metab. 41, 6S9–6S15 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Fysekidis, M. et al. Increased glycemic variability and decrease of the postprandial glucose contribution to HbA1c in obese subjects across the glycemic continuum from normal glycemia to first time diagnosed diabetes. Metabolism 63, 1553–1561 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  PubMed  CAS  Google Scholar 

  160. Hamblin, M., Chang, L., Fan, Y., Zhang, J. & Chen, Y. E. PPARs and the cardiovascular system. Antioxid. Redox Signal. 11, 1415–1452 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Liu, W. et al. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 2288–2293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shinozaki, K. et al. Role of insulin resistance associated with compensatory hyperinsulinemia in ischemic stroke. Stroke 27, 37–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Zunker, P. et al. Hyperinsulinism and cerebral microangiopathy. Stroke 27, 219–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Tyrberg, M., Melander, A., Lvestam-Adrian, M. & Lindblad, U. Retinopathy in subjects with impaired fasting glucose: the NANSY-Eye baseline report. Diabetes Obes. Metab. 10, 646–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Chandrasekera, P. C. & Pippin, J. J. Of rodents and men: species-specific glucose regulation and type 2 diabetes research. ALTEX 31, 157–176 (2014).

    Article  PubMed  Google Scholar 

  166. Cherrington, A. D., Moore, M. C., Sindelar, D. K. & Edgerton, D. S. Insulin action on the liver in vivo. Biochem. Soc. Trans. 35, 1171–1174 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Lai, M., Chandrasekera, P. C. & Barnard, N. D. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr. Diabetes 4, e135 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Wang, B., Chandrasekera, P. C. & Pippin, J. J. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr. Diabetes Rev. 10, 131–145 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Thliveris, J. A., Paz, G. F., Rempel, E. & Faiman, C. An extra-pancreatic direct effect of streptozotocin on the hypothalamo–hypophyseal–testicular axis in the rat. Anat. Anz. 157, 213–219 (1984).

    CAS  PubMed  Google Scholar 

  170. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models — association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

E.G. is supported by the Swiss National Science Foundation (grant P2EZP3_172178). C.P.M. is a Howard Hughes Medical Institute Medical Research Fellow. R.M.E. is an Investigator of the Howard Hughes Medical Institute at the Salk Institute and March of Dimes Chair in Molecular and Developmental Biology, and is supported by NIH grants (DK057978, HL088093, HL105278 and ES010337), an National Cancer Institute (NCI) Cancer Center Support Grant (CA014195), the Glenn Foundation for Medical Research, and grants from Steven and Lisa Altman and the Leona M. and Harry B. Helmsley Charitable Trust (2012-PG-MED002).

Author information

Authors and Affiliations

Authors

Contributions

E.G., C.P.M., M.D. and R.M.E. researched data for the article and wrote the manuscript. All authors contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ronald M. Evans.

Ethics declarations

Competing interests

M.D. and R.M.E are co-inventors of mutated FGF1 proteins and methods of their use (US Patent No. 8,906,854) and might be entitled to royalties.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasser, E., Moutos, C., Downes, M. et al. FGF1 — a new weapon to control type 2 diabetes mellitus. Nat Rev Endocrinol 13, 599–609 (2017). https://doi.org/10.1038/nrendo.2017.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing