Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of Fox genes and their role in development and disease

Key Points

  • The Fox, or forkhead box, family of transcription factors is an evolutionarily ancient gene family that has expanded to more than 40 members in the mammalian genome.

  • Fox genes are involved in a wide range of processes; for example, from the control of the cell cycle to the differentiation of epithelia, and from placental development to the formation of the inner ear.

  • The functional diversity in Fox proteins is achieved partially through differences in interaction partners, such as modifying enzymes and cofactors, and partially through differences in the spatio-temporal expression patterns of the Fox genes.

  • Fox transcription factors are characterized by a common winged-helix DNA-binding motif that is related to the motif in the linker histone H1.

  • To show the breadth of function of the Fox gene family in more detail, we focus on three Fox classes — FoxO, FoxA and FoxP — because each of these classes explains a unique and important aspect of the diverse biology of the gene family.

  • Members of the FoxA subclass play multiple parts in organ development and metabolism, and as 'pioneer' factors in chromatin reorganization.

  • The FoxO subclass is a central mediator of insulin signalling, controlling processes that are as diverse as longevity and glucose metabolism.

  • The first transcription factor that was shown to function in language acquisition is FOXP2. Its homologue is important in learned vocalization in songbirds.

  • Future research will need to focus on improving our understanding of how Fox genes select from their thousands of potential binding sites in the genome to exert their specific effects, and also on how these important genes are regulated, both at the transcriptional level as well as by post-translational modifications.

Abstract

The forkhead box (Fox) family of transcription factors, which originated in unicellular eukaryotes, has expanded over time through multiple duplication events, and sometimes through gene loss, to over 40 members in mammals. Fox genes have evolved to acquire a specialized function in many key biological processes. Mutations in Fox genes have a profound effect on human disease, causing phenotypes as varied as cancer, glaucoma and language disorders. We summarize the salient features of the evolution of the Fox gene family and highlight the diverse contribution of various Fox subfamilies to developmental processes, from organogenesis to speech acquisition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolutionary tree of mouse forkhead box (Fox) genes.
Figure 2: Alignment of forkhead box (Fox) genes in mice.
Figure 3: The insulin, Akt and FoxO pathway.

Similar content being viewed by others

References

  1. Weigel, D., Jurgens, G., Kuttner, F., Seifert, E. & Jackle, H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658 (1989). This paper describes the cloning of the gene responsible for the fork head mutation in D. melanogaster , after which the Fox gene family is named.

    Article  CAS  PubMed  Google Scholar 

  2. Tuteja, G. & Kaestner, K. H. SnapShot: forkhead transcription factors I. Cell 130, 1160 (2007).

    Article  PubMed  Google Scholar 

  3. Tuteja, G. & Kaestner, K. H. Forkhead transcription factors II. Cell 131, 192 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Laganiere, J. et al. Location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl Acad. Sci. USA 102, 11651–11656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, E. et al. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4, 1427–1436 (1990). This paper is the first characterization of a Fox gene as a DNA-binding protein and transcriptional regulator.

    Article  CAS  PubMed  Google Scholar 

  7. Weigel, D. & Jackle, H. The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63, 455–456 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Cirillo, L. A. & Zaret, K. S. Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J. Mol. Biol. 366, 720–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993). This paper describes the first molecular structure of the DNA-binding domain of a Fox protein and shows that it resembles those of linker histones.

    Article  CAS  PubMed  Google Scholar 

  10. Jin, C., Marsden, I., Chen, X. & Liao, X. Dynamic DNA contacts observed in the NMR structure of winged helix protein–DNA complex. J. Mol. Biol. 289, 683–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Tsai, K. L. et al. Crystal structure of the human FOXK1a–DNA complex and its implications on the diverse binding specificity of winged helix/forkhead proteins. J. Biol. Chem. 281, 17400–17409 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Stroud, J. C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kaestner, K. H., Knochel, W. & Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000). This paper provides the first systematic naming scheme of Fox genes on the basis of protein similarities in the forkhead domain.

    CAS  PubMed  Google Scholar 

  14. Larroux, C. et al. Genesis and expansion of metazoan transcription factor gene classes. Mol. Biol. Evol. 25, 980–996 (2008). This paper provides a phylogenetic analysis of Fox genes, focusing on the early expansion of this family.

    Article  CAS  PubMed  Google Scholar 

  15. Katoh, M. Human FOX gene family. Int. J. Oncol. 25, 1495–1500 (2004).

    CAS  PubMed  Google Scholar 

  16. Lee, H. H. & Frasch, M. Survey of forkhead domain encoding genes in the Drosophila genome: classification and embryonic expression patterns. Dev. Dyn. 229, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Leveugle, M., Prat, K., Popovici, C., Birnbaum, D. & Coulier, F. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions. J. Mol. Evol. 58, 168–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Magie, C. R., Pang, K. & Martindale, M. Q. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev. Genes Evol. 215, 618–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Mazet, F., Amemiya, C. T. & Shimeld, S. M. An ancient Fox gene cluster in bilaterian animals. Curr. Biol. 16, R314–R316 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Solomon, K. S., Logsdon, J. M. Jr & Fritz, A. Expression and phylogenetic analyses of three zebrafish FoxI class genes. Dev. Dyn. 228, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tu, Q., Brown, C. T., Davidson, E. H. & Oliveri, P. Sea urchin forkhead gene family: phylogeny and embryonic expression. Dev. Biol. 300, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Mazet, F., Yu, J. K., Liberles, D. A., Holland, L. Z. & Shimeld, S. M. Phylogenetic relationships of the Fox (forkhead) gene family in the Bilateria. Gene 316, 79–89 (2003). This paper provides a detailed phylogenetic analysis of Fox genes in the Bilateria, including an analysis of natural selection based on site-specific shifts in mutation rates between clades.

    Article  CAS  PubMed  Google Scholar 

  23. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ohno, S. Evolution by Gene Duplication (Allen and Unwin, London, 1970).

    Book  Google Scholar 

  25. Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Wan, H. et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem. 280, 13809–13816 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Behr, R., Sackett, S. D., Bochkis, I. M., Le, P. P. & Kaestner, K. H. Impaired male fertility and atrophy of seminiferous tubules caused by haploinsufficiency for Foxa3. Dev. Biol. 306, 636–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh, L. N. & Hannenhalli, S. Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression. PLoS ONE 3, e2345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cocquet, J. et al. Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet. Genome Res. 101, 206–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002). This paper provides some evidence for adaptive evolution of FOXP2 in humans, although an alternative explanation involving relaxed constraint could not be ruled out.

    Article  CAS  PubMed  Google Scholar 

  31. Bredenkamp, N., Seoighe, C. & Illing, N. Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation. Dev. Genes Evol. 217, 227–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kappen, C., Schughart, K. & Ruddle, F. H. Organization and expression of homeobox genes in mouse and man. Ann. NY Acad. Sci. 567, 243–252 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Madison, B. B., McKenna, L. B., Dolson, D., Epstein, D. J. & Kaestner, K. H. FOXF1 and FOXL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J. Biol. Chem. 2 Dec 2008 (doi: 10.1074/jbc.M808103200).

    Article  CAS  PubMed  Google Scholar 

  34. Mahlapuu, M., Enerback, S. & Carlsson, P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 128, 2397–2406 (2001).

    CAS  PubMed  Google Scholar 

  35. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Cahill, C. M. et al. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J. Biol. Chem. 276, 13402–13410 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703–717 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997). References 38–41 establish the link between lifespan, insulin signalling and the FoxO (DAF-16 in nematodes) class of transcription factors. These findings formed the basis of the subsequent demonstration that FoxO proteins are important mediators of insulin signalling in mammals.

    Article  CAS  PubMed  Google Scholar 

  42. Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. O'Brien, R. M. et al. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol. Cell. Biol. 15, 1747–1758 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ayala, J. E. et al. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 48, 1885–1889 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274, 17184–17192 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hall, R. K. et al. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J. Biol. Chem. 275, 30169–30175 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nakae, J. et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genet. 32, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R. A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Dong, X. C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Parry, P., Wei, Y. & Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 11, 79–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Barr, F. G. The role of chimeric paired box transcription factors in the pathogenesis of pediatric rhabdomysarcoma. Cancer Res. 59 (Suppl.), 1711–1715 (1999).

    Google Scholar 

  54. Xia, S. J. & Barr, F. G. Analysis of the transforming and growth suppressive activities of the PAX3–FKHR oncoprotein. Oncogene 23, 6864–6871 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lai, E., Prezioso, V. R., Tao, W. F., Chen, W. S. & Darnell, J. E. Jr. Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5, 416–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Ang, S. L. & Rossant, J. HNF-3β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Weinstein, D. C. et al. The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, L., Rubins, N. E., Ahima, R. S., Greenbaum, L. E. & Kaestner, K. H. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2, 141–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Gao, N. et al. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 132, 3431–3443 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Gao, N. et al. The role of hepatocyte nuclear factor-3α (forkhead box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol. Endocrinol. 17, 1484–1507 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, X. et al. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. NY Acad. Sci. 1061, 77–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, X. et al. The role of forkhead box A2 to restrict androgen-regulated gene expression of lipocalin 5 in the mouse epididymis. Mol. Endocrinol. 20, 2418–2431 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Friedman, J. R. & Kaestner, K. H. The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 63, 2317–2328 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bochkis, I. M. et al. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nature Med. 14, 828–836 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Ang, S. L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301–1315 (1993).

    CAS  PubMed  Google Scholar 

  67. Besnard, V., Wert, S. E., Hull, W. M. & Whitsett, J. A. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr. Patterns 5, 193–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kaestner, K. H., Hiemisch, H., Luckow, B. & Schutz, G. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20, 377–385 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Monaghan, A. P., Kaestner, K. H., Grau, E. & Schutz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3α, β and γ genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578 (1993).

    CAS  PubMed  Google Scholar 

  70. Besnard, V., Wert, S. E., Kaestner, K. H. & Whitsett, J. A. Stage-specific regulation of respiratory epithelial cell differentiation by Foxa1. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L750–L759 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kaestner, K. H., Katz, J., Liu, Y., Drucker, D. J. & Schutz, G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 13, 495–504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shih, D. Q., Navas, M. A., Kuwajima, S., Duncan, S. A. & Stoffel, M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3α-deficient mice. Proc. Natl Acad. Sci. USA 96, 10152–10157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wan, H. et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131, 953–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Mango, S. E., Lambie, E. J. & Kimble, J. The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120, 3019–3301 (1994).

    CAS  PubMed  Google Scholar 

  75. Horner, M. A. et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E. & Copp, A. J. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126, 2455–2462 (2003).

    Article  PubMed  Google Scholar 

  81. MacDermot, K. D. et al. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am. J. Hum. Genet. 76, 1074–1080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shu, W. et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc. Natl Acad. Sci. USA 102, 9643–9648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scharff, C. & Haesler, S. An evolutionary perspective on FoxP2: strictly for the birds? Curr. Opin. Neurobiol. 15, 694–703 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Haesler, S. et al. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biol. 5, e321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Feuk, L. et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am. J. Hum. Genet. 79, 965–972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Crespi, B. J. Sly FOXP2: genomic conflict in the evolution of language. Trends Ecol. Evol. 22, 174–175 (2007).

    Article  PubMed  Google Scholar 

  87. Li, S., Zhou, D., Lu, M. M. & Morrisey, E. E. Advanced cardiac morphogenesis does not require heart tube fusion. Science 305, 1619–1622 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, B. et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131, 4477–4487 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  90. Nishimura, D. Y. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19, 140–147 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Fang, J. et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema–distichiasis syndrome. Am. J. Hum. Genet. 67, 1382–1388 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Li, J. & Vogt, P. K. The retroviral oncogene qin belongs to the transcription factor family that includes the homeotic gene fork head. Proc. Natl Acad. Sci. USA 90, 4490–4494 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Costa, R. H., Kalinichenko, V. V., Holterman, A. X. & Wang, X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 38, 1331–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Wierstra, I. & Alves, J. FOXM1, a typical proliferation-associated transcription factor. Biol. Chem. 388, 1257–1274 (2007).

    CAS  PubMed  Google Scholar 

  97. Kalinichenko, V. V. et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 18, 830–850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The related work in the Kaestner laboratory is supported by the National Institutes of Health (NIH) grants DK-42910, DK-53839 and DK-55342, and in the Hannenhalli laboratory by NIH grant R01GM085226. The authors thank L. N. Singh for his help with preparing some of the figures. We apologize to all our colleagues whose important contributions could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

IPEX

lymphedema–distichiasis

Rieger syndrome

FURTHER INFORMATION

Sridhar Hannenhalli's laboratory homepage

Klaus H. Kaestner's laboratory homepage

ClustalX multiple sequence alignment

ENSEMBL v50

Index of winged helix proteins

Jalview multiple alignment editor

NCBI

Pfam database

T-Coffee multiple sequence alignment package

Glossary

Positive selection

An evolutionary process by which beneficial alleles (alleles that result in increased fitness of the organism) become more frequent in a population.

Purifying selection

An evolutionary process by which deleterious alleles (alleles that result in reduced fitness of the organism) become less frequent in the population, thereby making sequences in which this process occurs more similar compared with those from different species or from individuals of the same species.

Gluconeogenic

This term describes processes that relate to gluconeogenesis, the process of synthesizing glucose from amino acids and glucose in the liver and kidney in response to fasting.

Haploinsufficiency

A condition in a diploid organism in which a single functional copy of a gene results in a phenotype such as a disease. In this case, having only 50% of gene function (50% of the protein levels present in the wild-type state) is not sufficient to fulfil the needs of the cells or the organism.

Glycogenolysis

The breakdown of glycogen that occurs during fasting. Glycogen is the storage form of carbohydrates used in animals and is broken down to liberate glucose during times of fasting.

Linker histone

The major protein component of chromatin. Linker histones allow compaction of DNA, but also play important parts in gene regulation. The linker histone H1 binds to the DNA strands as they emerge from the nucleosome particle, which is assembled by the core histones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannenhalli, S., Kaestner, K. The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10, 233–240 (2009). https://doi.org/10.1038/nrg2523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing