Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity

Key Points

  • Mutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD), that involve skin cancer and developmental and neurological symptoms.

  • DNA damage in non-transcribed regions of the genome is recognized by the combined action of the DNA damage-binding 2 (DDB2) and XPC recognition proteins. Structural studies show that the binding mechanism does not depend on the chemical nature of the damaged bases but only on the loss of hydrogen bonding, which produces local single-stranded regions and the extrusion of the damage to an extrahelical position.

  • The repair of damage in transcriptionally active regions is faster than in non-transcribed regions and is associated with the functions of the CSA (also known as ERCC8) and CSB (also known as ERCC6) genes. Mutations in this pathway are associated with photosensitivity and neurodegeneration.

  • The neurodegeneration in patients with defective DNA repair is associated in part with internally generated DNA damage. One potential source is reactive oxygen released from mitochondria; other sources could be circulating steroids and other reactive metabolites.

  • Mutations in the XPD protein, which is a component of the TFIIH transcription factor, result in a complex set of diseases, including XP, TTD and XP combined with CS. The complexity is thought to arise because mutations affect different functions of XPD, such as the helicase activity, the stability of TFIIH and the interactions of XPD with other transcription factor components.

  • Mice with individual nucleotide excision repair genes knocked out or with specific mutations inserted display a cancer-prone phenotype but weakly display a neurological phenotype, unless combined transcription-coupled repair and global genomic repair crosses are made.

Abstract

Mutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that involve skin cancer and developmental and neurological symptoms. These mutations cause the defective repair of damaged DNA and increased transcription arrest but, except for skin cancer, the links between repair and disease have not been obvious. Widely different clinical syndromes seem to result from mutations in the same gene, even when the mutations result in complete loss of function. The mapping of mutations in recently solved protein structures has begun to clarify the links between the molecular defects and phenotypes, but the identification of additional sources of clinical variability is still necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The xeroderma pigmentosum C protein.
Figure 2: The Cockayne syndrome B protein.
Figure 3: Functional motifs and mutation sites of archaeal xeroderma pigmentosum D.
Figure 4: Lifespan and clinical features of xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy.

Similar content being viewed by others

References

  1. Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564–573 (2005).

    Article  CAS  Google Scholar 

  2. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001). A thorough review of the major pathways of nucleotide and base excision repair and DNA strand break repair and their relationships to human disease.

    Article  CAS  PubMed  Google Scholar 

  3. De Weerd-Kastelein, E. A., Keijzer, W. & Bootsma, D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nature New Biol. 238, 80–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kraemer, K. H., Lee, M. M. & Scotto, J. Xeroderma pigmentosum. Cutaneous, ocular and neurological abnormalities in 830 published cases. Arch. Dermatol. 123, 241–250 (1987). This paper describes the time course of onset of clinical symptoms, including photosensitivity and cancer, in a large cohort of patients with XP. It clearly shows the early onset and increased level of skin cancer in most patients.

    Article  CAS  PubMed  Google Scholar 

  6. Cleaver, J. E. Defective repair replication in xeroderma pigmentosum. Nature 218, 652–656 (1968). This paper is the first report of repair deficiency in three patients with XP; one patient had severe skin cancer and the other two patients had additional neurological symptoms.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, L. H. in DNA Repair in Higher Eukaryotes Vol. 2 (eds Nickoloff, J. A. & Hoekstra, M.) 335–393 (Humana, Totowa, 1998).

    Book  Google Scholar 

  8. Cleaver, J. E. & Revet, I. Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging. Mech. Ageing Dev. 129, 492–497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 264, 263–265 (1999).

    Article  Google Scholar 

  10. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kraemer, K. H., Lee, M. M., Andrews, A. D. & Lambert, W. C. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol. 130, 1018–1021 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Kleijer, W. J. et al. Incidence of DNA repair deficiency disorders in western Europe: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair (Amst.) 7, 744–750 (2008).

    Article  CAS  Google Scholar 

  13. Nishigori, C., Moriwaki, S., Takebe, H., Tanaka, T. & Imamura, S. Gene alterations and clinical characteristics of xeroderma pigmentosum group A patients in Japan. Arch. Dermatol. 130, 191–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Cleaver, J. E. DNA repair deficiencies and cellular senescence are unrelated in xeroderma pigmentosum cell lines. Mech. Ageing Dev. 27, 189–196 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Kraemer, K. H., Lee, M. M. & Scotto, J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5, 511–514 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Sollitto, R. B., Kraemer, K. H. & DiGiovanna, J. J. Normal vitamin D levels can be maintained despite rigorous photoprotection: six years' experience with xeroderma pigmentosum. J. Am. Acad. Dermatol. 37, 942–947 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Dixon, K. M. et al. Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. J. Steroid Biochem. Mol. Biol. 97, 137–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Spina, C. S. et al. Vitamin D and cancer. Anticancer Res. 26, 2515–2524 (2006).

    CAS  PubMed  Google Scholar 

  19. Wijnhoven, S. W., Hoogervorst, E. M., de Waard, H., van der Horst, G. T. & van Steeg, H. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat. Res. 614, 77–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68–84 (1992). This paper is an extensive description of the skin, neurological and developmental abnormalities in a large cohort of patients with CS.

    Article  CAS  PubMed  Google Scholar 

  21. Colella, S. et al. Alterations in the CSB gene in three Italian patients with the severe form of Cockayne syndrome (CS) but without clinical photosensitivity. Hum. Mol. Genet. 8, 935–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Cleaver, J. E., Charles, W. C., McDowell, M., Karentz, D. & Thomas, G. H. in DNA Repair Mechanisms Vol. 35 (eds Bohr, V. A., Wasserman, K. & Kraemer, K. H.) 56–67 (Munksgaard, Copenhagen, 1992).

    Google Scholar 

  23. Fujiwara, Y., Ichihashi, M., Kano, Y., Goto, K. & Shimuzu, K. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation. J. Invest. Dermatol. 77, 256–263 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Itoh, T., Ono, T. & Yamaizumi, M. A new UV-sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat. Res. 314, 233–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Itoh, T., Fujiwara, Y., Ono, T. & Yamaizumi, M. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am. J. Hum. Genet. 56, 1267–1276 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorodetsky, E., Calkins, S., Ahn, J. & Brooks, P. J. ATM, the Mre11/Rad50/Nbs1 complex, and topoisomerase I are concentrated in the nucleus of Purkinje neurons in the juvenile human brain. DNA Repair (Amst.) 6, 1698–1707 (2007).

    Article  CAS  Google Scholar 

  27. Laposa, R. R., Huang, E. J. & Cleaver, J. E. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc. Natl Acad. Sci. USA 104, 1389–1394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  29. Rapin, I. et al. Cockayne syndrome in adults: review with clinical and pathologic study of a new case. J. Child Neurol. 21, 991–1006 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyauchi, H. et al. Cockayne syndrome in two adult siblings. J. Am. Acad. Dermatol. 30, 329–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44, 891–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Liang, C. et al. Structural and molecular hair abnormalities in trichothiodystrophy. J. Invest. Dermatol. 126, 2210–2216 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Faghri, S., Tamura, D., Kraemer, K. H. & Digiovanna, J. J. Trichothiodystrophy: a systematic review of 112 published cases characterizes a wide spectrum of clinical manifestations. J. Med. Genet. 45, 609–621 (2008). This paper is an extensive description of the skin, neurological and developmental abnormalities in a large cohort of patients with TTD.

    Article  CAS  PubMed  Google Scholar 

  34. Broughton, B. C. et al. Relationship between pyrimidine dimers, 6–4 photoproducts, repair synthesis and cell survival: studies using cells from patients with trichothiodystrophy. Mutat. Res. 235, 33–40 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Ranish, J. A. et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genet. 36, 707–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Botta, E. et al. Mutations in the C7orf11 (TTDN1) gene in six nonphotosensitive trichothiodystrophy patients: no obvious genotype–phenotype relationships. Hum. Mutat. 28, 92–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. de Boer, J., Donker, I., de Wit, J., Hoeijmakers, J. H. J. & Weeda, G. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res. 58, 89–94 (1998).

    CAS  PubMed  Google Scholar 

  40. Karentz, D. & Cleaver, J. E. Excision repair in xeroderma pigmentosum group C but not group D is clustered in a small fraction of the total genome. Mutat. Res. 165, 165–174 (1986).

    CAS  PubMed  Google Scholar 

  41. Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135, 1213–1223 (2009).

    Article  CAS  Google Scholar 

  42. Zelle, B. & Lohman, P. H. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat. Res. 62, 363–368 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, J. & Chu, G. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1, 601–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cleaver, J. E., Feeney, L., Tang, J. Y. & Tuttle, P. Xeroderma pigmentosum group C in an isolated region of Guatemala. J. Invest. Dermatol. 127, 493–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Khan, S. G. et al. XPC initiation codon mutation in xeroderma pigmentosum patients with and without neurological symptoms. DNA Repair (Amst.) 8, 114–125 (2009).

    Article  CAS  Google Scholar 

  46. Bernardes de Jesus, B. M., Bjørås, M., Coin, F. & Egly, J. M. Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol. Cell. Biol. 28, 7225–7235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hananian, J. & Cleaver, J. E. Xeroderma pigmentosum exhibiting neurological disorders and systemic lupus erythematosus. Clin. Genet. 17, 39–45 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Chavanne, F. et al. Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein, and transcript levels. Cancer Res. 60, 1974–1982 (2000).

    CAS  PubMed  Google Scholar 

  49. Khan, S. G. et al. The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res. 30, 3624–3631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan, S. G. et al. Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk. Hum. Mol. Genet. 13, 343–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Emmert, S., Kobayashi, N., Khan, S. G. & Kraemer, K. H. The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6–4 photoproducts. Proc. Natl Acad. Sci. USA 97, 2151–2156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bunick, C. G., Miller, M. R., Fuller, B. E., Fanning, E. & Chazin, W. J. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry 45, 14965–14979 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Khan, S. G. et al. Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis 27, 84–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Melis, J. P. et al. Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes. Cancer Res. 68, 1347–1353 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Yasuda, G. et al. In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Mol. Cell. Biol. 27, 6606–6614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maillard, O., Solyom, S. & Naegeli, H. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PloS Biol. 5, e79 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB–ubiquitin ligase complex. Cell 121, 387–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Sugasawa, K. & Hanaoka, F. Sensing of DNA damage by XPC/Rad4: one protein for many lesions. Nature Struct. Mol. Biol. 14, 887–888 (2007).

    Article  CAS  Google Scholar 

  60. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Svejstrup, J. Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116, 447–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative repair coupling factor CSB/ERCC6 to RNA polymerase elongation complex. Mol. Cell. Biol. 17, 6803–6814 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lehmann, A. R., Kirk-Bell, S. & Mayne, L. Abnormal kinetics of DNA synthesis in ultraviolet light-irradiated cells from patients with Cockayne's syndrome. Cancer Res. 39, 4237–4241 (1979).

    CAS  PubMed  Google Scholar 

  66. Licht, C. L., Stevnser, T. & Bohr, V. A. Cockayne syndrome group B cellular and biochemical functions. Am. J. Hum. Genet. 73, 1217–1239 (2003). This paper provides an extensive review of the cellular properties of CS cells in culture, including their sensitivity to DNA-damaging agents, repair deficiencies and protein interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831 (1996).

    CAS  PubMed  Google Scholar 

  68. Parris, C. H. & Kraemer, K. H. Ultraviolet-light induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc. Natl Acad. Sci. USA 90, 7260–7264 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuan, X., Feng, W., Imhof, A., Grummt, I. & Zhou, Y. Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol. Cell 27, 585–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Spivak, G. & Hanawalt, P. C. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst.) 5, 13–22 (2006).

    Article  CAS  Google Scholar 

  71. Balajee, A. S., Dianova, I. & Bohr, V. A. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells. Nucleic Acids Res. 27, 4476–4482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frosina, G. Oxidatively damaged DNA repair defect in cockayne syndrome and its complementation by heterologous repair proteins. Curr. Med. Chem. 15, 940–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Tuo, J., Jaruga, P., Rodriguez, H., Bohr, V. A. & Dizdaroglu, M. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J. 17, 668–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Niedernhofer, L. J., Daniels, J. S., Rouzer, C. A., Greene, R. E. & Marnett, L. J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278, 31426–31433 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Maddukuri, L. et al. Cockayne syndrome group B protein is engaged in processing of DNA adducts of lipid peroxidation product trans-4-hydroxy-2-nonenal. Mutat. Res. 666, 23–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Waard, H. et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative damage. Mol. Cell. Biol. 24, 7941–7948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kyng, K. J. et al. The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Oncogene 22, 1135–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Hayashi, M., Araki, S., Kohyama, J., Shioda, K. & Fukatsu, R. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev. 27, 34–38 (2005).

    Article  PubMed  Google Scholar 

  79. Citterio, E. et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J. Biol. Chem. 273, 11844–11851 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272, 1885–1890 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Newman, J. C., Bailey, A. D. & Weiner, A. M. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc. Natl Acad. Sci. USA 103, 9613–9618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muftuoglu, M. et al. Cockayne syndrome group B protein has novel strand annealing and exchange activities. Nucleic Acids Res. 34, 295–304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frontini, M. & Proietti- De-Santis, L. Cockayne syndrome B protein (CSB): linking p53, HIF-1 and p300 to robustness, lifespan, cancer and cell fate decisions. Cell Cycle 8, 693–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Imam, S. Z. et al. Cockayne syndrome protein B interacts with and is phosphorylated by c-Abl tyrosine kinase. Nucleic Acids Res. 35, 4941–4951 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thorsland, T. et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase I in the response to oxidative damage. Mol. Cell. Biol. 25, 7625–7636 (2005).

    Article  CAS  Google Scholar 

  87. Mallery, D. L. et al. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am. J. Hum. Genet. 62, 77–85 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khobta, A., Kitsera, N., Speckmann, B. & Epe, B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair (Amst.) 8, 309–317 (2009).

    Article  CAS  Google Scholar 

  89. Stevnsner, T. et al. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene 21, 8675–8682 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Colella, S., Nardo, T., Botta, E., Lehmann, A. R. & Stefanini, M. Identical mutations in the CSB gene associated with either Cockayne syndrome or the DeSanctis–Cacchione variant of xeroderma pigmentosum. Hum. Mol. Genet. 9, 1171–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410–15415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Laugel, V. et al. COFS syndrome: three additional cases with CSB mutations, new diagnostic criteria and an approach to investigation. J. Med. Genet. 45, 564–571 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Newman, J. C., Bailey, A. D., Fan, H. Y., Pavelitz, T. & Weiner, A. M. An abundant evolutionarily conserved CSB–PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet. 4, e1000031 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Laugel, V. et al. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur. J. Hum. Genet. 16, 320–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Nardo, T. et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209–6214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hayashi, M. et al. Oxidative stress and disturbed glutamate transport in hereditary nucleotide repair disorders. J. Neuropathol. Exp. Neurol. 60, 350–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Vuillaume, M. et al. Striking differences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis 13, 321–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Kuraoka, I. et al. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst.) 6, 841–851 (2007).

    Article  CAS  Google Scholar 

  99. Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511–18520 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Brooks, P. J. The case for 8,5′-cyclopurine-2′-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum. Neuroscience 145, 1407–1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Botta, E. et al. Analysis of mutations in the XPD gene in Italian patients with trichothiodystrophy: site of mutation correlates with repair deficiency, but gene dosage appears to determine clinical severity. Am. J. Hum. Genet. 63, 1036–1048 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stefanini, M. et al. Genetic heterogeneity of the excision repair defect associated with trichothiodystrophy. Carcinogenesis 14, 1101–1105 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Cleaver, J. E. Splitting hairs — discovery of a new DNA repair and transcription factor for the human disease trichothiodystrophy. DNA Repair 4, 285–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Vitorino, M. et al. Solution structure and self-association properties of the p8 TFIIH subunit responsible for trichothiodystrophy. J. Mol. Biol. 368, 473–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Kainov, D. E., Vitorino, M., Cavarelli, J., Poterszman, A. & Egly, J.-M. Structural basis for group A trichothiodystrophy. Nature Struct. Mol. Biol. 15, 980–984 (2008).

    Article  CAS  Google Scholar 

  106. Taylor, E. M. et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc. Natl Acad. Sci. USA 94, 8658–8663 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, 1332–1342 (2008). References 107–109 describe the crystal structures of three different archaean XPD homologues, which provide clues to the reasons why different mutations in the corresponding human protein can give rise to a wide range of clinical disorders through different changes of function.

    Article  CAS  Google Scholar 

  110. Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11, 1635–1646 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Koonin, E. V. Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein. Nucleic Acids Res. 21, 1497–1503 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genet. 20, 184–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, D. et al. Activation of estrogen receptor α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol. Cell 6, 127–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C. & Egly, J.-M. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARa. Cell 109, 125–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Compe, E. et al. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25, 6065–6076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 26, 231–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Boyle, J. et al. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy. Hum. Mutat. 29, 1194–1208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet. 27, 299–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43, 71–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Broughton, B. C. et al. Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum. Mol. Genet. 10, 2539–2547 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Fujimoto, M. et al. Two new XPD patients compound heterozygous for the same mutation demonstrate diverse clinical features. J. Invest. Dermatol. 125, 86–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Alekseev, S. et al. Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res. 65, 10298–10306 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Gorgels, T. G. et al. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol. Cell. Biol. 27, 1433–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. van der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone–insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 5, e2 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  125. Susa, D. et al. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice. Aging Cell 8, 192–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Szabó, C. Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol. Res. 52, 60–71 (2005).

    Article  PubMed  CAS  Google Scholar 

  127. Robbins, J. H., Brumback, R. A. & Moshell, A. N. Clinically asymptomatic xeroderma pigmentosum neurological disease in an adult: evidence for a neurodegeneration in later life caused by defective DNA repair. Eur. Neurol. 33, 188–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Dizdaroglu, M. & Teebor, G. W. Targeted deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence of novel carcinogenic oxidative damage to DNA. DNA Repair (Amst.) 8, 786–794 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  129. Klungland, A. & Bjelland, S. Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst.) 6, 481–488 (2007).

    Article  CAS  Google Scholar 

  130. Laposa, R. R., Feeney, L., Crowley, E., de Feraudy, S. & Cleaver, J. E. p53 suppression overwhelms DNA polymerase h deficiency in determining the cellular UV DNA damage response. DNA Repair 6, 1794–1804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gueven, N. et al. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free Radic. Biol. Med. 41, 992–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Reardon, J. T. & Sancar, A. Nucleotide excision repair. Prog. Nucleic Acid Res. Mol. Biol. 79, 183–235 (2005). This is an extensive review of the biochemistry of NER with special emphasis on the mechanisms by which proteins of low inherent affinity can have specificity in detecting and binding to damaged DNA.

    Article  CAS  PubMed  Google Scholar 

  133. Cleaver, J. E. & Mitchell, D. L. in Cancer Medicine Vol. 1 Ch. 17 (eds Kufe, D. W. et al.) 283–291 (BC Deckker, Ontario, 2006).

    Google Scholar 

  134. Wang, Y. et al. Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas. Proc. Natl Acad. Sci. USA 106, 6279–6284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Suarez, H. G. et al. Activated oncogenes in human skin tumors from a repair-deficient syndrome, xeroderma pigmentosum. Cancer Res. 49, 1223–1228 (1989).

    CAS  PubMed  Google Scholar 

  136. Giglia, G. et al. p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Res. 58, 4402–4409 (1998).

    CAS  PubMed  Google Scholar 

  137. Bodak, N. et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc. Natl Acad. Sci. USA 96, 5117–5122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Yang, L. J., Jiang, H. & Rangel, K. M. RNA polymerase II stalled on a DNA template during transcription elongation is ubiquitinated and the ubiquitination facilitates displacement of the elongation complex. Int. J. Oncol. 22, 683–689 (2003).

    CAS  PubMed  Google Scholar 

  140. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Wakasugi, M. & Sancar, A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl Acad. Sci. USA 95, 6669–6674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oh, K. S., Imoto, K., Boyle, J., Khan, S. G. & Kraemer, K. H. Influence of XPB helicase on recruitment and redistribution of nucleotide excision repair proteins at sites of UV-induced DNA damage. DNA Repair (Amst.) 6, 1359–1370 (2007).

    Article  CAS  Google Scholar 

  143. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J.-M. & Wood, R. M. Mechanism of open complex formation by human nucleotide excision repair factors. EMBO J. 16, 6559–6573 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Coin, F., Oksenych, V. & Egly, J.-M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ogi, T. & Lehmann, A. The Y-family DNA polymerase κ (pol κ) functions in mammalian nucleotide-excision repair. Nature Cell Biol. 8, 640–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III α in a cell-cycle-specific manner. Mol. Cell 27, 311–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Scharer, O. D. Achieving broad substrate specificity in damage recognition by binding to accessible nondamaged DNA. Cell 28, 184–186 (2007). This paper describes the ribbon structure of the DNA-binding region of yeast Rad4 and shows that the mechanism of damage recognition involves the extrusion of the damaged site to an extrahelical position.

    CAS  Google Scholar 

Download references

Acknowledgements

The work described here was supported by grant 1R01NS052781 from the US National Institute of Neurological Disorders and Stroke. We are also grateful to the XP Society, the XP Family Support Group and the Luke O'Brien Foundation for their continued support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Cleaver.

Related links

Related links

FURTHER INFORMATION

Cockayne Syndrome Network

Information on DNA damage repair proteins

Information on human DNA repair genes

Photobiological Sciences Online

The XP Society

XP Family Support Group

Glossary

Archaea

A group of single-celled microorganisms that lack a nucleus or any other organelles. They have an independent evolutionary history, show distinctive biochemistry and are now classified as a separate domain from eukaryotes and bacteria.

Cachectic dwarfism

Dwarfism associated with loss of weight, muscle atrophy, fatigue, weakness and substantial loss of appetite. Cachexia is the loss of body mass that cannot be reversed nutritionally even with caloric supplements.

Retinopathy

Non-inflammatory damage to the retina of the eye. Frequently, retinopathy is an ocular manifestation of systemic disease.

Microcephaly

A neurodevelopmental disorder in which the circumference of the head is more than two standard deviations smaller than average for the person's age and sex.

Purkinje cells

The primary integrative neurons of, and sole output from, the cerebellar cortex. The cerebellum has an important role in the integration of sensory perception, coordination and motor control.

Ichthyosis

A heterogeneous family of skin disorders characterized by dry, thickened, scaly or flaky skin. The term arises from a resemblance to the scales on a fish.

Cyclobutane pyrimidine dimer

The most common photoproduct induced in DNA by shortwave UV-B and UV-C wavelengths. Adjacent pyrimidines on the same DNA strand are linked by new bonds between the 5–5 and 6–6 positions and the normal 5=6 double bonds become single.

Ubiquitylation

The conjugation of ubiquitin, which is a highly conserved 76-amino-acid protein, to another protein. Monoubiquitylation is involved in cell signalling, whereas polyubiquitylation can mark proteins for destruction.

[6–4] photoproduct

An ultraviolet radiation-induced DNA lesion formed between the C-4 position of a 5′ pyrimidine and the C-6 position of an adjacent pyrimidine. This occurs approximately one-third as frequently as the cyclobutane pyrimidine dimer but causes greater structural distortion.

SWI/SNF proteins

(Switch/sucrose non-fermentable proteins). Chromatin remodelling multiprotein complexes. This protein family was initially identified in yeast, but related complexes exist in mammals and are involved in gene activation and repression.

Poly(ADP-ribosyl)ation

A post-translational modification that involves the addition of one or more ADP-ribose moieties to proteins. It is involved in cell signalling and the control of many processes, including DNA repair and apoptosis. The modification generally results in reduced protein activity.

Base excision repair

A process for replacing damaged single nucleotides that involves DNA glycosylases.

Reactive oxygen species

Ions or small molecules, including oxygen ions, free radicals and inorganic and organic peroxides, that are highly reactive owing to the presence of unpaired valence shell electrons. They are a by-product of the normal metabolism of oxygen and have important roles in cell signalling. Increased levels, due to environmental stress, can result in damage to cells.

Transposon

A mobile DNA element that can move in the genome. Transposons can be used for various applications, including insertional mutagenesis, gene identification, gene tagging and DNA sequencing.

Glycation end product

The product of a chain of chemical reactions after an initial glycation reaction by which sugar molecules become bound to a protein or lipid molecule without the controlling action of an enzyme.

Globus pallidus

A subcortical structure of the brain that is a major element of the basal ganglia system.

Helicase

An enzyme that separates the two nucleic acid strands in a double helix, which results in the formation of regions of ssDNA or ssRNA.

Ischaemia–reperfusion injury

Injury to the epithelial cells of blood vessels and surrounding tissue that occurs during reoxygenation after the transient interruption of blood flow. It is thought to be caused by the rapid changes in tissue oxygenation.

Glycosylase

DNA glycosylases are a family of enzymes that are involved in base excision repair. They remove the damaged nitrogenous base by flipping it out of the double helix. This is followed by cleavage of the N-glycosidic bond. The sugar–phosphate backbone remains intact, creating an apurinic or apyrimidinic site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleaver, J., Lam, E. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10, 756–768 (2009). https://doi.org/10.1038/nrg2663

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing