Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of X-chromosome inactivation by the X-inactivation centre

Key Points

  • X-chromosome inactivation (XCI) is controlled by a complex locus termed the X-inactivation centre (Xic).

  • Chromosome-wide silencing is triggered through expression of Xist, a long non-coding RNA (ncRNA) that is upregulated on one of the two X chromosomes in differentiating XX cells.

  • XCI can be imprinted or random, and both forms require Xist but have different Xic requirements.

  • During random XCI, the Xist promoter is repressed, directly or indirectly, by a combination of factors including pluripotency factors, which ensure that Xist is only expressed in differentiated cells.

  • Several X-linked elements/factors ensure that Xist is upregulated only in cells with more than one X chromosome.

  • Monoallelic Xist expression may be regulated by several mechanisms, including: imprinting (maternal repression); low probability of Xist activation followed by an Xist-mediated negative feedback loop; secondary selection against aberrant XCI patterns; asymmetry introduced when physical interactions between the Tsix alleles occur; and the existence of posed asymmetric and switchable fates between the two X chromosomes before XCI.

  • The X/autosome (X/A) ratio influences the number of X chromosomes that will remain active during random XCI, so that diploid cells only keep one active X chromosome and tetraploid cells tend to keep two active X chromosomes, irrespective to their total X chromosome number.

  • The inactive state of the X chromosome can be reversed in specific tissues and at specific stages of development, as well as during cloning or induced pluripotency experiments in mice.

  • Different mammals may exploit different mechanisms of Xist regulation during early embryogenesis.

Abstract

X-chromosome inactivation (XCI) ensures dosage compensation in mammals and is a paradigm for allele-specific gene expression on a chromosome-wide scale. Important insights have been made into the developmental dynamics of this process. Recent studies have identified several cis- and trans-acting factors that regulate the initiation of XCI via the X-inactivation centre. Such studies have shed light on the relationship between XCI and pluripotency. They have also revealed the existence of dosage-dependent activators that trigger XCI when more than one X chromosome is present, as well as possible mechanisms underlying the monoallelic regulation of this process. The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have also contributed to the X chromosome becoming a gold standard in reprogramming studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The X-inactivation centre.
Figure 2: The cycle of XCI in female mouse embryos and ESCs.
Figure 3: Summary of Xist regulation at the onset of XCI.
Figure 4: Models for monoallelic regulation of Xist.

Similar content being viewed by others

References

  1. Rastan, S. Non-random X-chromosome inactivation in mouse X-autosome translocation embryos—location of the inactivation centre. J. Embryol. Exp. Morphol. 78, 1–22 (1983). Based on the study of X/A translocations, this paper demonstrates that the initiation of cis -inactivation depends on the presence of a unique region of the X chromosome, the Xic , the distal boundary of which maps to the Searle's translocation breakpoint.

    CAS  PubMed  Google Scholar 

  2. Rastan, S. & Robertson, E. J. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morphol. 90, 379–388 (1985). Based on the analysis of female cells with truncated X chromosomes, this paper demonstrates that at least two copies of the Xic are required for XCI to occur and maps the proximal boundary of the Xic to the HD3 breakpoint.

    CAS  PubMed  Google Scholar 

  3. Gartler, S. M. & Riggs, A. D. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17, 155–190 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. T. Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309, 768–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Augui, S. et al. Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318, 1632–1636 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991). This paper identifies the human XIST gene, based on its unique expression pattern and location within the candidate XIC region.

    Article  CAS  PubMed  Google Scholar 

  8. Borsani, G. et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996). This study demonstrates that Xist expression is required in cis for XCI.

    Article  CAS  PubMed  Google Scholar 

  11. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000). This study demonstrated that Xist RNA expression is sufficient to trigger cis -inactivation, and also defined the developmental time window during which it can trigger silencing.

    Article  CAS  PubMed  Google Scholar 

  13. Beletskii, A., Hong, Y. K., Pehrson, J., Egholm, M. & Strauss, W. M. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA 98, 9215–9220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet. 30, 167–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rasmussen, T. P., Wutz, A. P., Pehrson, J. R. & Jaenisch, R. R. Expression of Xist RNA is sufficient to initiate macrochromatin body formation. Chromosoma 110, 411–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, e171 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pullirsch, D. et al. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137, 935–943 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Clemson, C. M., Hall, L. L., Byron, M., McNeil, J. & Lawrence, J. B. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc. Natl Acad. Sci. USA 103, 7688–7693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow, J. C. et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141, 956–969 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, B. K., Deaton, A. M. & Lee, J. T. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol. Cell 21, 617–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Royce-Tolland, M. E. et al. The A-repeat links ASF/SF2-dependent Xist RNA processing with random choice during X inactivation. Nature Struct. Mol. Biol. 17, 948–954 (2010).

    Article  CAS  Google Scholar 

  25. Hoki, Y. et al. A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136, 139–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Navarro, P. et al. Molecular coupling of Xist regulation and pluripotency. Science 321, 1693–1695 (2008). This study demonstrates that the core pluripotency transcription factors OCT4 and NANOG participate in Xist repression in ESCs.

    Article  CAS  PubMed  Google Scholar 

  27. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N. & Lee, J. T. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460, 128–132 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ma, Z., Swigut, T., Valouev, A., Rada-Iglesias, A. & Wysocka, J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nature Struct. Mol. Biol. 18, 120–127 (2011).

    Article  CAS  Google Scholar 

  30. Barakat, T. S. et al. RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genet. 7, e1002001 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Navarro, P. et al. Molecular coupling of Tsix regulation and pluripotency. Nature 468, 457–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Jonkers, I. et al. RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139, 999–1011 (2009). This paper identifies RNF12, a ubiquitin ligase encoded by an X-linked gene, as a dose-dependent Xist activator and also provides molecular evidence for the existence of a negative feedback loop involving X inactivation of Rnf12 following Xist expression.

    Article  CAS  PubMed  Google Scholar 

  33. Monkhorst, K., Jonkers, I., Rentmeester, E., Grosveld, F. & Gribnau, J. X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132, 410–421 (2008). This study demonstrates that heterozygous deletion of a region spanning the Xist/Tsix/Xite locus in XX ESCs does not prevent XCI from the wild-type chromosome upon differentiation, thus demonstrating that other X-linked loci must be responsible for the capacity of XX cells to trigger XCI.

    Article  CAS  PubMed  Google Scholar 

  34. Heard, E., Mongelard, F., Arnaud, D. & Avner, P. Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol. Cell. Biol. 19, 3156–3166 (1999). This work demonstrates that large, single-copy Xist transgenes covering up to 460 kb of neighbouring sequence are unable to trigger Xist expression — either in cis from the transgene or in trans from the endogenous X chromosome — thus highlighting the existence of critical long-range cis - and trans - acting elements in the regulation of Xist.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sun, B. K., Fukue, Y., Nolen, L., Sadreyev, R. I. & Lee, J. T. Characterization of Xpr (Xpct) reveals instability but no effects on X-chromosome pairing or Xist expression. Transcription 1, 1–11 (2010).

    Article  Google Scholar 

  36. Shin, J. et al. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature 467, 977–981 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. O'Neill, L. P. et al. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J. 18, 2897–2907 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chureau, C. et al. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum. Mol. Genet. 20, 705–718 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cattanach, B. M. & Isaacson, J. H. Controlling elements in the mouse X chromosome. Genetics 57, 331–346 (1967).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cattanach, B. M. & Williams, C. E. Evidence of non-random X chromosome activity in the mouse. Genet. Res. 19, 229–240 (1972).

    Article  CAS  PubMed  Google Scholar 

  42. Rastan, S. Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genet. Res. 40, 139–147 (1982).

    Article  CAS  PubMed  Google Scholar 

  43. Simmler, M. C., Cattanach, B. M., Rasberry, C., Rougeulle, C. & Avner, P. Mapping the murine Xce locus with (CA)n repeats. Mamm. Genome 4, 523–530 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Courtier, B., Heard, E. & Avner, P. Xce haplotypes show modified methylation in a region of the active X chromosome lying 3′ to Xist. Proc. Natl Acad. Sci. USA 92, 3531–3535 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boumil, R. M., Ogawa, Y., Sun, B. K., Huynh, K. D. & Lee, J. T. Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X-inactivation choice in mice. Mol. Cell. Biol. 26, 2109–2117 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chadwick, L. H., Pertz, L. M., Broman, K. W., Bartolomei, M. S. & Willard, H. F. Genetic control of X chromosome inactivation in mice: definition of the Xce candidate interval. Genetics 173, 2103–2110 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Clerc, P. & Avner, P. Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nature Genet. 19, 249–253 (1998). This study demonstrated that deletion of a 65 kb region downstream of Xist results in primary skewing of XCI.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, J. T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999). This study identified the role of the Xist antisense Tsix transcription unit in the control of XCI initiation.

    Article  CAS  PubMed  Google Scholar 

  49. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    CAS  PubMed  Google Scholar 

  50. Morey, C., Arnaud, D., Avner, P. & Clerc, P. Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum. Mol. Genet. 10, 1403–1411 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Morey, C. et al. The region 3′ to Xist mediates X chromosome counting and H3 Lys-4 dimethylation within the Xist gene. EMBO J. 23, 594–604 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Luikenhuis, S., Wutz, A. & Jaenisch, R. Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol. Cell. Biol. 21, 8512–8520 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Stavropoulos, N., Lu, N. & Lee, J. T. A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc. Natl Acad. Sci. USA 98, 10232–10237 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Newall, A. E. et al. Primary non-random X inactivation associated with disruption of Xist promoter regulation. Hum. Mol. Genet. 10, 581–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Nesterova, T. B. et al. Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes Dev. 17, 2177–2190 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Debrand, E., Chureau, C., Arnaud, D., Avner, P. & Heard, E. Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol. Cell. Biol. 19, 8513–8525 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Navarro, P., Pichard, S., Ciaudo, C., Avner, P. & Rougeulle, C. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev. 19, 1474–1484 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Tsix-deficient X chromosome does not undergo inactivation in the embryonic lineage in males: implications for Tsix-independent silencing of Xist. Cytogenet. Genome Res. 113, 345–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sado, T., Hoki, Y. & Sasaki, H. Tsix silences Xist through modification of chromatin structure. Dev. Cell 9, 159–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Navarro, P., Page, D. R., Avner, P. & Rougeulle, C. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev. 20, 2787–2792 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135, 227–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Shibata, S., Yokota, T. & Wutz, A. Synergy of Eed and Tsix in the repression of Xist gene and X-chromosome inactivation. EMBO J. 27, 1816–1826 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Navarro, P. et al. A role for non-coding Tsix transcription in partitioning chromatin domains within the mouse X-inactivation centre. Epigenetics Chromatin 2, 8 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Ogawa, Y., Sun, B. K. & Lee, J. T. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Nesterova, T. B. et al. Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics Chromatin 1, 2 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kota, S. K. RNAi in X inactivation: contrasting findings on the role of interference. Bioessays 31, 1280–1283 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kalantry, S. & Magnuson, T. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet. 2, e66 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Cohen, D. E. et al. The DXPas34 repeat regulates random and imprinted X inactivation. Dev. Cell 12, 57–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Heard, E. et al. Physical mapping and YAC contig analysis of the region surrounding Xist on the mouse X chromosome. Genomics 15, 559–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Stavropoulos, N., Rowntree, R. K. & Lee, J. T. Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol. Cell. Biol. 25, 2757–2769 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Vigneau, S., Augui, S., Navarro, P., Avner, P. & Clerc, P. An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc. Natl Acad. Sci. USA 103, 7390–7395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shibata, S. & Lee, J. T. Characterization and quantitation of differential Tsix transcripts: implications for Tsix function. Hum. Mol. Genet. 12, 125–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Donohoe, M. E., Zhang, L. F., Xu, N., Shi, Y. & Lee, J. T. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol. Cell 25, 43–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Ogawa, Y. & Lee, J. T. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11, 731–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Sado, T., Okano, M., Li, E. & Sasaki, H. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131, 975–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Starmer, J. & Magnuson, T. A new model for random X chromosome inactivation. Development 136, 1–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Bacher, C. P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biol. 8, 293–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Xu, N., Tsai, C. L. & Lee, J. T. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152 (2006). The above two studies discovered the existence of trans -interactions between the two copies of the Xic in ESCs during XCI initiation.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, N., Donohoe, M. E., Silva, S. S. & Lee, J. T. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nature Genet. 39, 1390–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Masui, O. et al. Live cell chromosome dynamics and outcome of X-chromosome pairing events during ES cell differentiation. Cell 145, 447–458 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mlynarczyk-Evans, S. et al. X chromosomes alternate between two states prior to random X-inactivation. PLoS Biol. 4, e159 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Speirs, S., Cross, J. M. & Kaufman, M. H. The pattern of X-chromosome inactivation in the embryonic and extra-embryonic tissues of post-implantation digynic triploid LT/Sv strain mouse embryos. Genet. Res. 56, 107–114 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Webb, S., de Vries, T. J. & Kaufman, M. H. The differential staining pattern of the X chromosome in the embryonic and extraembryonic tissues of postimplantation homozygous tetraploid mouse embryos. Genet. Res. 59, 205–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Monkhorst, K. et al. The probability to initiate X chromosome inactivation is determined by the X to autosomal ratio and X chromosome specific allelic properties. PLoS ONE 4, e5616 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004). This study showed that the Xp is inactivated in all cells of the early embryo by the blastocyst stage and that it is subsequently reactivated in the ICM.

    Article  CAS  PubMed  Google Scholar 

  87. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004). This study revealed that the Xp is active in the early embryo, with imprinted X-inactivation initiating at the four-cell stage, accompanied by chromatin modifications that are lost when paternal X-reactivation occurs in the ICM.

    Article  CAS  PubMed  Google Scholar 

  88. Patrat, C. et al. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc. Natl Acad. Sci. USA 106, 5198–5203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kay, G. F., Barton, S. C., Surani, M. A. & Rastan, S. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77, 639–650 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Goto, Y. & Takagi, N. Tetraploid embryos rescue embryonic lethality caused by an additional maternally inherited X chromosome in the mouse. Development 125, 3353–3363 (1998).

    CAS  PubMed  Google Scholar 

  91. Goto, Y. & Takagi, N. Maternally inherited X chromosome is not inactivated in mouse blastocysts due to parental imprinting. Chromosome Res. 8, 101–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Monk, M. & McLaren, A. X-chromosome activity in foetal germ cells of the mouse. J. Embryol. Exp. Morphol. 63, 75–84 (1981).

    CAS  PubMed  Google Scholar 

  93. Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kalantry, S., Purushothaman, S., Bowen, R. B., Starmer, J. & Magnuson, T. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460, 647–651 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Namekawa, S. H., Payer, B., Huynh, K. D., Jaenisch, R. & Lee, J. T. Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol. Cell. Biol. 30, 3187–3205 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438, 369–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Kay, G. F. et al. Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72, 171–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Norris, D. P. et al. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Ariel, M., Robinson, E., McCarrey, J. R. & Cedar, H. Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nature Genet. 9, 312–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Zuccotti, M. & Monk, M. Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nature Genet. 9, 316–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Okamoto, I., Tan, S. & Takagi, N. X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation. Development 127, 4137–4145 (2000).

    CAS  PubMed  Google Scholar 

  102. Matsui, J., Goto, Y. & Takagi, N. Control of Xist expression for imprinted and random X chromosome inactivation in mice. Hum. Mol. Genet. 10, 1393–1401 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Nesterova, T. B., Barton, S. C., Surani, M. A. & Brockdorff, N. Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Dev. Biol. 235, 343–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Tada, T. et al. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127, 3101–3105 (2000).

    CAS  PubMed  Google Scholar 

  105. Chiba, H. et al. De novo DNA methylation independent establishment of maternal imprint on X chromosome in mouse oocytes. Genesis 46, spcone (2008).

    Article  Google Scholar 

  106. Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nature Genet. 40, 411–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 6 Apr 2011 (doi:10.1038/nature09872).

    Article  CAS  PubMed  Google Scholar 

  109. Sugimoto, M. & Abe, K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet. 3, e116 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. de Napoles, M., Nesterova, T. & Brockdorff, N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PLoS ONE 2, e860 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Chuva de Sousa Lopes, S. M. et al. X chromosome activity in mouse XX primordial germ cells. PLoS Genet. 4, e30 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Tchieu, J. et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7, 329–342 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Eggan, K. et al. X-chromosome inactivation in cloned mouse embryos. Science 290, 1578–1581 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Bao, S. et al. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Rep. 6, 748–754 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Lyon, M. F. Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14, 135–148 (1962).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Grumbach, M. M., Morishima, A. & Taylor, J. H. Human sex chromosome abnormalities in relation to DNA replication and heterochromatinization. Proc. Natl Acad. Sci. USA 49, 581–589 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jacobs, P. A. et al. Evidence for the existence of the human “super female”. Lancet 2, 423–425 (1959).

    Article  CAS  PubMed  Google Scholar 

  121. Ferguson-Smith, M. A., Johnston, A. W. & Handmaker, S. D. Primary amentia and micro-orchidism associated with an XXXY sex-chromosome constitution. Lancet 2, 184–187 (1960).

    Article  CAS  PubMed  Google Scholar 

  122. Fraccaro, M., Kaijser, K. & Lindsten, J. A child with 49 chromosomes. Lancet 2, 899–902 (1960).

    Article  CAS  PubMed  Google Scholar 

  123. Miller, O. J., Breg, W. R., Schmickel, R. D. & Tretter, W. A family with an XXXXY male, a leukaemic male, and two 21-trisomic mongoloid females. Lancet 2, 78–79 (1961).

    Article  CAS  PubMed  Google Scholar 

  124. Polani, P. E. in Molecular Genetics and Human Disease (ed. Gardner, L. I.) 153–178 (Charles C. Thomas, Springfield, Illinois, USA, 1961).

    Google Scholar 

  125. Heard, E. et al. Transgenic mice carrying an Xist-containing YAC. Hum. Mol. Genet. 5, 441–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, J. T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Lee, J. T., Lu, N. & Han, Y. Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc. Natl Acad. Sci. USA 96, 3836–3841 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grumbach, M. M. in Second Int. Conf. on Congenital Malformations. 62–67 (Int. Med. Congr. Ltd., New York, 1964).

    Google Scholar 

  130. Lyon, M. F. in Second Int. Conf. on Congenital Malformations. 67–68 (Int. Med. Congr. Ltd., New York, 1964).

    Google Scholar 

  131. Russell, L. B. Another look at the single-active-X hypothesis. Trans. N. Y. Acad. Sci. 26, 726–736 (1964).

    Article  CAS  PubMed  Google Scholar 

  132. Takagi, N. Primary and secondary nonrandom X chromosome inactivation in early female mouse embryos carrying Searle's translocation T(X; 16)16H. Chromosoma 81, 439–459 (1980).

    Article  CAS  PubMed  Google Scholar 

  133. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  134. Searle, A. G. A review of factors affecting the incidence of radiation-induced lethals in mammals. Strahlentherapie 51, 215–223 (1962).

    CAS  PubMed  Google Scholar 

  135. Eicher, E. M., Nesbitt, M. N. & Francke, U. Cytological identification of the chromosomes involved in Searle's translocation and the location of the centromere in the X chromosome of the mouse. Genetics 71, 643–648 (1972).

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Brown, C. J. et al. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349, 82–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Lafreniere, R. G. et al. Physical mapping of 60 DNA markers in the p21.1→q21.3 region of the human X chromosome. Genomics 11, 352–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Marahrens, Y., Loring, J. & Jaenisch, R. Role of the Xist gene in X chromosome choosing. Cell 92, 657–664 (1998). This work demonstrated that Xist is necessary in cis during random XCI for an X chromosome to be inactivated, and that its heterozygous deletion leads to primary skewing of XCI.

    Article  CAS  PubMed  Google Scholar 

  139. Nicodemi, M. & Prisco, A. Symmetry-breaking model for X-chromosome inactivation. Phys. Rev. Lett. 98, 108104 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Barr, M. L. & Bertram, E. G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676 (1949).

    Article  CAS  PubMed  Google Scholar 

  141. Ohno, S. & Hauschka, T. S. Allocycly of the X-chromosome in tumors and normal tissues. Cancer Res. 20, 541–545 (1960).

    CAS  PubMed  Google Scholar 

  142. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  143. Russell, L. B. Mammalian X-chromosome action: inactivation limited in spread and region of origin. Science 140, 976–978 (1963).

    Article  CAS  PubMed  Google Scholar 

  144. Herzing, L. B., Romer, J. T., Horn, J. M. & Ashworth, A. Xist has properties of the X-chromosome inactivation centre. Nature 386, 272–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Mise, N., Goto, Y., Nakajima, N. & Takagi, N. Molecular cloning of antisense transcripts of the mouse Xist gene. Biochem. Biophys. Res. Commun. 258, 537–541 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all of our colleagues in the Mammalian Developmental Epigenetics team for their discussions and input and extend our apologies to any authors whose work could not be discussed owing to space constraints. Our work is supported by the FRM, ANR, ARC, the EU Integrated projects HEROIC and SYBOSS, EU Networks of excellence Epigenome and Epigenesys, as well as an ERC Advanced Investigator award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Heard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Edith Heard's homepage

Glossary

Homogametic and heterogametic sexes

In species with sexual dimorphism, the sex that can produce two different types of gametes (X and Y or Z and W) is called heterogametic, whereas the sex that can produce only one type of gamete (X or Z) is called homogametic.

Imprinted

Epigenetic marking of a locus on the basis of its parental origin, which can result in differential expression of the paternal and maternal alleles in specific tissues or developmental stages.

Polycomb group proteins

(PcG proteins). A class of proteins — originally described in Drosophila melanogaster — that form large complexes and maintain the stable and heritable repression of several genes throughout development.

Trithorax group proteins

(TrxG proteins). A class of proteins — originally described in Drosophila melanogaster — that form large complexes and maintain the stable and heritable expression of several genes throughout development.

Pluripotency factors

A class of proteins that — maintain pluripotency the capacity to give rise to a wide range of, but not all, cell lineages — of stem cells.

Dicer

An RNase III family endonuclease that processes dsRNA and precursor microRNAs into small interfering RNAs and microRNAs, respectively.

CCCTC-binding factor

(CTCF). A highly conserved DNA-binding protein with 11 zinc fingers that, in mammalian genomes, binds to regulatory elements such as insulators.

Eutherians

Mammals in which the development of progeny takes place in the mother's body thanks to the placenta, a fetal membrane that facilitates nutrient and waste exchange between the fetus and the mother.

Meiotic sex chromosome inactivation

(MSCI). Silencing and hetero-chromatinization of sex chromosomes in the male germ line during meiosis.

Androgenetic

Androgenetic embryos are produced by the fusion of two haploid paternal genomes.

Parthenogenote

A uniparental embryo produced by the development of an unfertilized egg.

Gynogenote

An embryo produced by the fusion of two haploid maternal genomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augui, S., Nora, E. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12, 429–442 (2011). https://doi.org/10.1038/nrg2987

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing