Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current understanding of osteoporosis associated with liver disease

Abstract

Osteoporosis is a common complication of many types of liver disease. Research into the pathogenesis of osteoporosis has revealed that the mechanisms of bone loss differ between different types of liver disease. This Review summarizes our current understanding of osteoporosis associated with liver disease and the new advances that have been made in this field. The different mechanisms by which cholestatic and parenchymal liver disease can lead to reduced bone mass, the prevalence of osteopenia and osteoporosis in patients with early and advanced liver disease, and the influence of osteoporotic fractures on patient survival are discussed along with the advances in our understanding of the molecular pathways associated with bone loss. The role of the CSF1–RANKL system and that of the liver molecule, oncofetal fibronectin, a protein that has traditionally been viewed as an extracellular matrix protein are also discussed. The potential impact that these advances may have for the treatment of osteoporosis associated with liver disease is also reviewed.

Key Points

  • Metabolic bone disease is a common complication of chronic liver disease; patients with chronic liver disease have an increased risk of bone fractures, which affects patient survival and well being

  • Osteoporosis is uncommon in patients with early liver disease but affects up to 50% of patients with cirrhosis

  • The cause of bone loss in patients with chronic liver disease is multifactorial and differs between types of liver diseases

  • Levels of osteoprotegerin are elevated and levels of RANKL are decreased in patients with liver disease and osteoporosis

  • Factors that may contribute to bone loss include oncofetal fibronectin and CSF1 in patients with cholestatic liver disease, and TNF in patients with viral hepatitis and alcoholic liver disease

  • Current therapy for bone loss relies on supportive measurements with calcium and vitamin D supplementation; bisphosphonate therapy is efficacious and safe for patients with primary biliary cirrhosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that affect bone turnover in patients with liver disease.

Similar content being viewed by others

References

  1. Collier, J. Bone disorders in chronic liver disease. Hepatology 46, 1271–1278 (2007).

    CAS  PubMed  Google Scholar 

  2. Diamond, T. et al. Osteoporosis and skeletal fractures in chronic liver disease. Gut 31, 82–87 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pares, A. & Guanabens, N. Osteoporosis in primary biliary cirrhosis: pathogenesis and treatment. Clin. Liver Dis. 12, 407–424 (2008).

    PubMed  Google Scholar 

  4. Caetano-Lopes, J., Canhao, H. & Fonseca, J. E. Osteoimmunology--the hidden immune regulation of bone. Autoimmun. Rev. 8, 250–255 (2009).

    CAS  PubMed  Google Scholar 

  5. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    CAS  PubMed  Google Scholar 

  6. WHO. Prevention and management of osteoporosis. Report of a WHO scientific group (WHO, Geneva, 2003).

  7. Hay, J. E. & Guichelaar, M. M. Evaluation and management of osteoporosis in liver disease. Clin. Liver Dis. 9, 747–766 (2005).

    PubMed  Google Scholar 

  8. Leslie, W. D., Bernstein, C. N., Leboff, M. S. & American Gastroenterological Association Clinical Practice Commitee. AGA technical review on osteoporosis in hepatic disorders. Gastroenterology 125, 941–966 (2003).

    PubMed  Google Scholar 

  9. Bagur, A., Mautalen, C., Findor, J., Sorda, J. & Somoza, J. Risk factors for the development of vertebral and total skeleton osteoporosis in patients with primary biliary cirrhosis. Calcif. Tissue Int. 63, 385–390 (1998).

    CAS  PubMed  Google Scholar 

  10. Benetti, A. et al. Primary biliary cirrhosis is not an additional risk factor for bone loss in women receiving regular calcium and vitamin D supplementation: a controlled longitudinal study. J. Clin. Gastroenterol. 42, 306–311 (2008).

    PubMed  Google Scholar 

  11. Guanabens, N. et al. Severity of cholestasis and advanced histological stage but not menopausal status are the major risk factors for osteoporosis in primary biliary cirrhosis. J. Hepatol. 42, 573–577 (2005).

    CAS  PubMed  Google Scholar 

  12. Guichelaar, M. M., Kendall, R., Malinchoc, M. & Hay, J. E. Bone mineral density before and after OLT: long-term follow-up and predictive factors. Liver Transpl. 12, 1390–1402 (2006).

    PubMed  Google Scholar 

  13. Pares, A. et al. Collagen type Ialpha1 and vitamin D receptor gene polymorphisms and bone mass in primary biliary cirrhosis. Hepatology 33, 554–560 (2001).

    CAS  PubMed  Google Scholar 

  14. Menon, K. V., Angulo, P., Weston, S., Dickson, E. R. & Lindor, K. D. Bone disease in primary biliary cirrhosis: independent indicators and rate of progression. J. Hepatol. 35, 316–323 (2001).

    CAS  PubMed  Google Scholar 

  15. Guichelaar, M. M., Malinchoc, M., Sibonga, J., Clarke, B. L. & Hay, J. E. Bone metabolism in advanced cholestatic liver disease: analysis by bone histomorphometry. Hepatology 36, 895–903 (2002).

    PubMed  Google Scholar 

  16. Guanabens, N. et al. Factors influencing the development of metabolic bone disease in primary biliary cirrhosis. Am. J. Gastroenterol. 85, 1356–1362 (1990).

    CAS  PubMed  Google Scholar 

  17. Corazza, G. R. et al. Early increase of bone resorption in patients with liver cirrhosis secondary to viral hepatitis. Dig. Dis. Sci. 45, 1392–1399 (2000).

    CAS  PubMed  Google Scholar 

  18. Gallego-Rojo, F. J. et al. Bone mineral density, serum insulin-like growth factor I, and bone turnover markers in viral cirrhosis. Hepatology 28, 695–699 (1998).

    CAS  PubMed  Google Scholar 

  19. Tsuneoka, K., Tameda, Y., Takase, K. & Nakano, T. Osteodystrophy in patients with chronic hepatitis and liver cirrhosis. J. Gastroenterol. 31, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  20. Masaki, K. et al. Longitudinal changes of bone mineral content with age in patients with cirrhosis of the liver. J. Gastroenterol. 33, 236–240 (1998).

    CAS  PubMed  Google Scholar 

  21. Schiefke, I. et al. Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J. Gastroenterol. 11, 1843–1847 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arase, Y. et al. Prolonged-efficacy of bisphosphonate in postmenopausal women with osteoporosis and chronic liver disease. J. Med. Virol. 80, 1302–1307 (2008).

    CAS  PubMed  Google Scholar 

  23. Carey, E. J., Balan, V., Kremers, W. K. & Hay, J. E. Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Transpl. 9, 1166–1173 (2003).

    PubMed  Google Scholar 

  24. Garcia-Valdecasas-Campelo, E. et al. Serum osteoprotegerin and RANKL levels in chronic alcoholic liver disease. Alcohol Alcohol. 41, 261–266 (2006).

    CAS  PubMed  Google Scholar 

  25. Olsson, R., Johansson, C., Lindstedt, G. & Mellstrom, D. Risk factors for bone loss in chronic active hepatitis and primary biliary cirrhosis. Scand. J. Gastroenterol. 29, 753–756 (1994).

    CAS  PubMed  Google Scholar 

  26. Diamond, T., Stiel, D. & Posen, S. Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or other factors? Ann. Intern. Med. 110, 430–436 (1989).

    CAS  PubMed  Google Scholar 

  27. Diamond, T. H. et al. Hepatic osteodystrophy. Static and dynamic bone histomorphometry and serum bone Gla-protein in 80 patients with chronic liver disease. Gastroenterology 96, 213–221 (1989).

    CAS  PubMed  Google Scholar 

  28. Foresta, C., Schipilliti, M., Ciarleglio, F. A., Lenzi, A. & D'Amico, D. Male hypogonadism in cirrhosis and after liver transplantation. J. Endocrinol. Invest. 31, 470–478 (2008).

    CAS  PubMed  Google Scholar 

  29. Bouillon, R. et al. Serum vitamin D metabolites and their binding protein in patients with liver cirrhosis. J. Clin. Endocrinol. Metab. 59, 86–89 (1984).

    CAS  PubMed  Google Scholar 

  30. Skinner, R. K., Sherlock, S., Long, R. G. & Wilis, M. R. 25-Hydroxylation of vitamin D in primary biliary cirrhosis. Lancet 1, 720–721 (1977).

    CAS  PubMed  Google Scholar 

  31. Herlong, H. F., Recker, R. R. & Maddrey, W. C. Bone disease in primary biliary cirrhosis: histologic features and response to 25-hydroxyvitamin D. Gastroenterology 83, 103–108 (1982).

    CAS  PubMed  Google Scholar 

  32. Matloff, D. S. et al. Osteoporosis in primary biliary cirrhosis: effects of 25-hydroxyvitamin D3 treatment. Gastroenterology 83, 97–102 (1982).

    CAS  PubMed  Google Scholar 

  33. Shiomi, S. et al. Calcitriol for bone loss in patients with primary biliary cirrhosis. J. Gastroenterol. 34, 241–245 (1999).

    CAS  PubMed  Google Scholar 

  34. Shiomi, S. et al. Calcitriol for bone disease in patients with cirrhosis of the liver. J. Gastroenterol. Hepatol. 14, 547–552 (1999).

    CAS  PubMed  Google Scholar 

  35. Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).

    CAS  PubMed  Google Scholar 

  36. Scharf, J. G. et al. Insulin-like growth factor-I serum concentrations and patterns of insulin-like growth factor binding proteins in patients with chronic liver disease. J. Hepatol. 25, 689–699 (1996).

    CAS  PubMed  Google Scholar 

  37. Asomaning, K., Bertone-Johnson, E. R., Nasca, P. C., Hooven, F. & Pekow, P. S. The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J. Womens Health (Larchmt) 15, 1028–1034 (2006).

    Google Scholar 

  38. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  39. Otte, C. et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp. Clin. Endocrinol. Diabetes 112, 10–17 (2004).

    CAS  PubMed  Google Scholar 

  40. Piche, T. et al. The severity of liver fibrosis is associated with high leptin levels in chronic hepatitis C. J. Viral Hepat. 11, 91–96 (2004).

    CAS  PubMed  Google Scholar 

  41. Ormarsdottir, S. et al. Inverse relationship between circulating levels of leptin and bone mineral density in chronic liver disease. J. Gastroenterol. Hepatol. 16, 1409–1414 (2001).

    CAS  PubMed  Google Scholar 

  42. Szalay, F. et al. Serum leptin, soluble leptin receptor, free leptin index and bone mineral density in patients with primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 17, 923–928 (2005).

    CAS  PubMed  Google Scholar 

  43. Guggenbuhl, P. et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos. Int. 16, 1809–1814 (2005).

    CAS  PubMed  Google Scholar 

  44. Le Gars, L., Grandpierre, C., Chazouilleres, O., Berenbaum, F. & Poupon, R. Bone loss in primary biliary cirrhosis: absence of association with severity of liver disease. Joint Bone Spine 69, 195–200 (2002).

    PubMed  Google Scholar 

  45. Pares, A., Guanabens, N. & Rodes, J. Gene polymorphisms as predictors of decreased bone mineral density and osteoporosis in primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 17, 311–315 (2005).

    CAS  PubMed  Google Scholar 

  46. Lakatos, L. P. et al. Vitamin D receptor, oestrogen receptor-alpha gene and interleukin-1 receptor antagonist gene polymorphisms in Hungarian patients with primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 14, 733–740 (2002).

    CAS  PubMed  Google Scholar 

  47. Springer, J. E. et al. Vitamin D-receptor genotypes as independent genetic predictors of decreased bone mineral density in primary biliary cirrhosis. Gastroenterology 118, 145–151 (2000).

    CAS  PubMed  Google Scholar 

  48. Rubin, L. A. et al. Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J. Bone Miner. Res. 14, 633–643 (1999).

    CAS  PubMed  Google Scholar 

  49. Vogel, A., Strassburg, C. P. & Manns, M. P. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 35, 126–131 (2002).

    CAS  PubMed  Google Scholar 

  50. Lakatos, P. L. et al. Insulin-like growth factor I gene microsatellite repeat, collagen type Ialpha1 gene Sp1 polymorphism, and bone disease in primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 16, 753–759 (2004).

    CAS  PubMed  Google Scholar 

  51. Sinigaglia, L. et al. Bone and joint involvement in genetic hemochromatosis: role of cirrhosis and iron overload. J. Rheumatol. 24, 1809–1813 (1997).

    CAS  PubMed  Google Scholar 

  52. Valenti, L. et al. Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos. Int. 20, 549–555 (2009).

    CAS  PubMed  Google Scholar 

  53. Schnitzler, C. M., Schnaid, E., MacPhail, A. P., Mesquita, J. M. & Robson, H. J. Ascorbic acid deficiency, iron overload and alcohol abuse underlie the severe osteoporosis in black African patients with hip fractures--a bone histomorphometric study. Calcif. Tissue Int. 76, 79–89 (2005).

    CAS  PubMed  Google Scholar 

  54. Voskaridou, E. & Terpos, E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br. J. Haematol. 127, 127–139 (2004).

    CAS  PubMed  Google Scholar 

  55. Diamond, T., Pojer, R., Stiel, D., Alfrey, A. & Posen, S. Does iron affect osteoblast function? Studies in vitro and in patients with chronic liver disease. Calcif. Tissue Int. 48, 373–379 (1991).

    CAS  PubMed  Google Scholar 

  56. Hegedus, D. et al. Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J. Bone Miner. Res. 17, 1961–1967 (2002).

    CAS  PubMed  Google Scholar 

  57. Janes, C. H. et al. Role of hyperbilirubinemia in the impairment of osteoblast proliferation associated with cholestatic jaundice. J. Clin. Invest. 95, 2581–2586 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, D. L. et al. Hyperbilirubinemia is not a major contributing factor to altered bone mineral density in patients with chronic liver disease. J. Clin. Densitom. 9, 105–113 (2006).

    PubMed  Google Scholar 

  59. Batta, A. K. et al. Effect of ursodeoxycholic acid on bile acid metabolism in primary biliary cirrhosis. Hepatology 10, 414–419 (1989).

    CAS  PubMed  Google Scholar 

  60. Lindor, K. D., Janes, C. H., Crippin, J. S., Jorgensen, R. A. & Dickson, E. R. Bone disease in primary biliary cirrhosis: does ursodeoxycholic acid make a difference? Hepatology 21, 389–392 (1995).

    CAS  PubMed  Google Scholar 

  61. Ringe, J. D. & Farahmand, P. Advances in the management of corticosteroid-induced osteoporosis with bisphosphonates. Clin. Rheumatol. 26, 474–484 (2007).

    PubMed  Google Scholar 

  62. Czaja, A. J. Safety issues in the management of autoimmune hepatitis. Expert Opin. Drug Saf. 7, 319–333 (2008).

    CAS  PubMed  Google Scholar 

  63. van der Merwe, S. W. et al. Effect of rapamycin on hepatic osteodystrophy in rats with portasystemic shunting. World J. Gastroenterol. 12, 4504–4510 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Merwe, S. W. et al. Hepatic osteodystrophy in rats results mainly from portasystemic shunting. Gut 52, 580–585 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yakar, S. et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl Acad. Sci. USA 96, 7324–7329 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yakar, S. et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cemborain, A. et al. Osteopenia in rats with liver cirrhosis: beneficial effects of IGF-I treatment. J. Hepatol. 28, 122–131 (1998).

    CAS  PubMed  Google Scholar 

  68. Gillberg, P., Mallmin, H., Petren-Mallmin, M., Ljunghall, S. & Nilsson, A. G. Two years of treatment with recombinant human growth hormone increases bone mineral density in men with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 87, 4900–4906 (2002).

    CAS  PubMed  Google Scholar 

  69. Ormarsdottir, S. et al. Circulating levels of insulin-like growth factors and their binding proteins in patients with chronic liver disease: lack of correlation with bone mineral density. Liver 21, 123–128 (2001).

    CAS  PubMed  Google Scholar 

  70. Heaney, R. P., Recker, R. R. & Saville, P. D. Menopausal changes in bone remodeling. J. Lab. Clin. Med. 92, 964–970 (1978).

    CAS  PubMed  Google Scholar 

  71. Insogna, K. et al. Role of the interleukin-6/interleukin-6 soluble receptor cytokine system in mediating increased skeletal sensitivity to parathyroid hormone in perimenopausal women. J. Bone Miner. Res. 17 (Suppl. 2), N108–N116 (2002).

    CAS  PubMed  Google Scholar 

  72. Syed, F. & Khosla, S. Mechanisms of sex steroid effects on bone. Biochem. Biophys. Res. Commun. 328, 688–696 (2005).

    CAS  PubMed  Google Scholar 

  73. Okazaki, R. et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143, 2349–2356 (2002).

    CAS  PubMed  Google Scholar 

  74. Hodgson, S. F. et al. Bone loss and reduced osteoblast function in primary biliary cirrhosis. Ann. Intern. Med. 103, 855–860 (1985).

    CAS  PubMed  Google Scholar 

  75. Mitchison, H. C., Malcolm, A. J., Bassendine, M. F. & James, O. F. Metabolic bone disease in primary biliary cirrhosis at presentation. Gastroenterology 94, 463–470 (1988).

    CAS  PubMed  Google Scholar 

  76. Stellon, A. J., Webb, A., Compston, J. & Williams, R. Low bone turnover state in primary biliary cirrhosis. Hepatology 7, 137–142 (1987).

    CAS  PubMed  Google Scholar 

  77. Dresner-Pollak, R. et al. Human parathyroid hormone 1–34 prevents bone loss in experimental biliary cirrhosis in rats. Gastroenterology 134, 259–267 (2008).

    CAS  PubMed  Google Scholar 

  78. Diamond, T., Stiel, D., Lunzer, M., Wilkinson, M. & Posen, S. Ethanol reduces bone formation and may cause osteoporosis. Am. J. Med. 86, 282–288 (1989).

    CAS  PubMed  Google Scholar 

  79. Guanabens, N. et al. Collagen-related markers of bone turnover reflect the severity of liver fibrosis in patients with primary biliary cirrhosis. J. Bone Miner. Res. 13, 731–738 (1998).

    CAS  PubMed  Google Scholar 

  80. Gonzalez-Calvin, J. L. et al. Osteoporosis, mineral metabolism, and serum soluble tumor necrosis factor receptor p55 in viral cirrhosis. J. Clin. Endocrinol. Metab. 89, 4325–4330 (2004).

    CAS  PubMed  Google Scholar 

  81. Herman, S., Kronke, G. & Schett, G. Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol. Med. 14, 245–253 (2008).

    CAS  PubMed  Google Scholar 

  82. Clay, P. G., Voss, L. E., Williams, C. & Daume, E. C. Valid treatment options for osteoporosis and osteopenia in HIV-infected persons. Ann. Pharmacother. 42, 670–679 (2008).

    CAS  PubMed  Google Scholar 

  83. Kotake, S. et al. Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 44, 1003–1012 (2001).

    CAS  PubMed  Google Scholar 

  84. Tilg, H., Moschen, A. R., Kaser, A., Pines, A. & Dotan, I. Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57, 684–694 (2008).

    CAS  PubMed  Google Scholar 

  85. Horwood, N. J. et al. Activated T lymphocytes support osteoclast formation in vitro. Biochem. Biophys. Res. Commun. 265, 144–150 (1999).

    CAS  PubMed  Google Scholar 

  86. Kim, Y. G. et al. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 357, 1046–1052 (2007).

    CAS  PubMed  Google Scholar 

  87. Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    CAS  PubMed  Google Scholar 

  89. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    CAS  PubMed  Google Scholar 

  90. Szalay, F. et al. High serum osteoprotegerin and low RANKL in primary biliary cirrhosis. J. Hepatol. 38, 395–400 (2003).

    CAS  PubMed  Google Scholar 

  91. Fabrega, E. et al. Osteoprotegerin and RANKL in alcoholic liver cirrhosis. Liver Int. 25, 305–310 (2005).

    CAS  PubMed  Google Scholar 

  92. Moschen, A. R. et al. The RANKL/OPG system and bone mineral density in patients with chronic liver disease. J. Hepatol. 43, 973–983 (2005).

    PubMed  Google Scholar 

  93. Monegal, A. et al. Serum osteoprotegerin and its ligand in cirrhotic patients referred for orthotopic liver transplantation: relationship with metabolic bone disease. Liver Int. 27, 492–497 (2007).

    CAS  PubMed  Google Scholar 

  94. Olivier, B. J. et al. Increased osteoclast formation and activity by peripheral blood mononuclear cells in chronic liver disease patients with osteopenia. Hepatology 47, 259–267 (2008).

    CAS  PubMed  Google Scholar 

  95. Pfeilschifter, J., Chenu, C., Bird, A., Mundy, G. R. & Roodman, G. D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J. Bone Miner. Res. 4, 113–118 (1989).

    CAS  PubMed  Google Scholar 

  96. Diez Ruiz, A. et al. Tumour necrosis factor, interleukin-1 and interleukin-6 in alcoholic cirrhosis. Alcohol Alcohol. 28, 319–323 (1993).

    CAS  PubMed  Google Scholar 

  97. Hanck, C., Rossol, S., Bocker, U., Tokus, M. & Singer, M. V. Presence of plasma endotoxin is correlated with tumour necrosis factor receptor levels and disease activity in alcoholic cirrhosis. Alcohol Alcohol. 33, 606–608 (1998).

    CAS  PubMed  Google Scholar 

  98. Decker, T., Lohmann-Matthes, M. L., Karck, U., Peters, T. & Decker, K. Comparative study of cytotoxicity, tumor necrosis factor, and prostaglandin release after stimulation of rat Kupffer cells, murine Kupffer cells, and murine inflammatory liver macrophages. J. Leukoc. Biol. 45, 139–146 (1989).

    CAS  PubMed  Google Scholar 

  99. Moursi, A. M. et al. Fibronectin regulates calvarial osteoblast differentiation. J. Cell. Sci. 109, 1369–1380 (1996).

    CAS  PubMed  Google Scholar 

  100. Sakai, T. et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat. Med. 7, 324–330 (2001).

    CAS  PubMed  Google Scholar 

  101. Kawelke, N. et al. Isoform of fibronectin mediates bone loss in patients with primary biliary cirrhosis by suppressing bone formation. J. Bone Miner. Res. 23, 1278–1286 (2008).

    CAS  PubMed  Google Scholar 

  102. Xu, G. et al. Gene expression and synthesis of fibronectin isoforms in rat hepatic stellate cells. Comparison with liver parenchymal cells and skin fibroblasts. J. Pathol. 183, 90–98 (1997).

    CAS  PubMed  Google Scholar 

  103. Marie, P. J. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38 (2 Suppl. 1), S10–S14 (2006).

    CAS  PubMed  Google Scholar 

  104. Oste, L. et al. Time-evolution and reversibility of strontium-induced osteomalacia in chronic renal failure rats. Kidney Int. 67, 920–930 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schalk W. van der Merwe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakchbandi, I., van der Merwe, S. Current understanding of osteoporosis associated with liver disease. Nat Rev Gastroenterol Hepatol 6, 660–670 (2009). https://doi.org/10.1038/nrgastro.2009.166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing