Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in liver disease

Abstract

Small, noncoding microRNAs (miRNAs) regulate diverse biological functions in the liver and increasing evidence suggests that they have a role in liver pathology. This Review summarizes advances in the field of miRNAs in liver diseases, inflammation and cirrhosis. MicroRNA-122, the most abundant miRNA in hepatocytes, has well-defined roles in HCV replication, and data indicate that it also serves as a viable therapeutic target. The role of miR-122 is also emerging in other liver diseases. Ample evidence exists for the important regulatory potential of other miRNAs in conditions associated with liver inflammation related to alcohol use, the metabolic syndrome or autoimmune processes. In addition, a broad array of miRNAs have been associated with the development of liver fibrosis both in animal models and human studies. The significance of the function and cellular distribution of miRNAs in the liver and the potential of miRNAs as a means of communication between cells and organs is discussed as well as the emerging utility of circulating miRNAs as biomarkers of different forms of liver damage and as early markers of disease and progression in hepatocellular carcinoma. Importantly, miRNA modulation in the liver represents a new therapeutic approach in the treatment armamentarium of hepatologists in the future.

Key Points

  • MicroRNAs (miRNAs) are encoded by genes and exert their intracellular effects by targeting post-transcriptional events on target genes

  • MiRNAs fine-tune all physiological and many pathological processes that are fundamental to normal liver functions and liver disease

  • The distribution and function of some miRNAs is cell-specific, and hepatocytes have the highest abundance of microRNA-122 expression in the body

  • In the liver, miRNAs have been shown to regulate processes such as inflammation, fibrosis, and lipid and glucose metabolism

  • Dysregulation in miRNAs is associated with liver diseases, such as hepatocellular carcinoma, viral hepatitis, alcoholic and nonalcoholic steatohepatitis and drug-induced liver injury

  • Extracellular miRNAs could serve as biomarkers of liver disease, but specificity might be a limitation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis of miRNAs.
Figure 2: Role of microRNAs in alcoholic liver disease.
Figure 3: MicroRNAs in chronic HCV infection.
Figure 4: Regulation of fibrogenetic events by microRNAs.
Figure 5: Circulating/extracellular microRNAs as biomarkers of liver disease.

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, G. et al. SNPs in human miRNA genes affect biogenesis and function. RNA 15, 1640–1651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoof, C. R., Botelho, E. L., Izzotti, A. & Vasques Ldos, R. MicroRNAs in cancer treatment and prognosis. Am. J. Cancer. Res. 2, 414–433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rottiers, V. & Naar, A. M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13, 239–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cheung, O. et al. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48, 1810–1820 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, B. et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 50, 1152–1161 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Bala, S. et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced and inflammatory liver diseases. Hepatology 56, 1946–1957 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Tsai, W. C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsu, S. H. et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 122, 2871–2883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iliopoulos, D., Drosatos, K., Hiyama, Y., Goldberg, I. J. & Zannis, V. I. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J. Lipid Res. 51, 1513–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, J. et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604–12611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. & Kemper, J. K. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany NY) 2, 527–534 (2010).

    Article  CAS  Google Scholar 

  18. Meng, F. et al. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am. J. Pathol. 181, 804–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vickers, K. C. et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57, 533–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. O'Neill, L. A., Sheedy, F. J. & McCoy, C. E. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 11, 163–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Bala, S. & Szabo, G. MicroRNA signature in alcoholic liver disease. Int. J. Hepatol. http://dx.doi.org/10.1155/2012/498232.

  22. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bala, S. et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J. Biol. Chem. 286, 1436–1444 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bala, S. et al. Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J. Transl. Med. 10, 151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sidorkiewicz, M. et al. Expression of microRNA-155 precursor in peripheral blood mononuclear cells from Hepatitis C patients after antiviral treatment. Acta Virol. 54, 75–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Grek, M. et al. Coordinated increase of miRNA-155 and miRNA-196b expression correlates with the detection of the antigenomic strand of hepatitis C virus in peripheral blood mononuclear cells. Int. J. Mol. Med. 28, 875–880 (2011).

    CAS  PubMed  Google Scholar 

  27. Zhang, Y. et al. Hepatitis C Virus-induced upregulation of miR-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 56, 1631–1640 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, J. L. et al. NF-κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl Acad. Sci. USA 108, 9184–9189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Lagos, D. et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat. Cell Biol. 12, 513–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Strum, J. C. et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol. 23, 1876–1884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bihrer, V. et al. Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 106, 1663–1669 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. An, F. et al. miR-15b and miR-16 regulate TNF mediated hepatocyte apoptosis via BCL2 in acute liver failure. Apoptosis 17, 702–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, D. S. et al. The regulatory role of microRNA-1187 in TNF-α-mediated hepatocyte apoptosis in acute liver failure. Int. J. Mol. Med. 29, 663–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma, A. D. et al. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 53, 1651–1661 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Song, G. et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 51, 1735–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ng, R., Song, G., Roll, G. R., Frandsen, N. M. & Willenbring, H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J. Clin. Invest. 122, 1097–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, J. et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS ONE 7, e33577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, C. et al. Down-regulation of MiR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS ONE 7, e39151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan, Q. et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 57, 299–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong, W. et al. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 28, 6773–6784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korpal, M. & Kang, Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5, 115–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Murakami, Y. et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 6, e16081 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung, C. J. et al. Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFβ tumor suppressor signaling pathways. Mol. Cancer. Res. 10, 979–991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Noetel, A., Kwiecinski, M., Elfimova, N., Huang, J. & Odenthal, M. microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front. Physiol. 3, 49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, Y. et al. The potential of microRNAs in liver fibrosis. Cell Signal. 24, 2268–2272 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Roderburg, C. et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS ONE 7, e32999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, B. et al. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem. Biophys. Res. Commun. 421, 4–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Roderburg, C. et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53, 209–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kwiecinski, M. et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab. Invest. 92, 978–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Mannaerts, I. et al. Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PLoS ONE 8, e55786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hand, N. J. et al. MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia. J. Pediatr. Gastroenterol. Nutr. 54, 186–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marquez, R. T. et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab. Invest. 90, 1727–1736 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Venugopal, S. K. et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G101–G106 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. He, Y. et al. MicroRNA-146a modulates TGF-β1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell. Signal. 24, 1923–1930 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Li, J. et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J. Hepatol. 58, 522–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Das, S. et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res. 110, 1596–1603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kren, B. T. et al. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 6, 65–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bian, Z. et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 20, 1076–1078 (2010).

    Article  PubMed  Google Scholar 

  63. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, D. H., Saetrom, P., Snove, O. Jr, & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  68. Roberts, A. P., Lewis, A. P. & Jopling, C. L. miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res. 39, 7716–7729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jopling, C. Liver-specific microRNA-122: biogenesis and function. RNA Biol. 9, 137–142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Conrad, K. D. et al. microRNA-122 dependent binding of Ago2 protein to hepatitis C virus RNA is associated with enhanced RNA stability and translation stimulation. PLoS ONE 8, e56272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hou, W., Bukong, T. N., Kodys, K. & Szabo, G. Alcohol facilitates HCV RNA replication via up-regulation of miR-122 expression and inhibition of cyclin G1 in human hepatoma cells. Alcohol. Clin. Exp. Res. 37, 599–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bukong, T. N., Hou, W., Kodys, K. & Szabo, G. Ethanol facilitates HCV replication via upregulation of GW182 and HSP90 in human hepatoma cells. Hepatology 57, 70–80 (2012).

    Article  CAS  Google Scholar 

  73. Ura, S. et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49, 1098–1112 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Qiu, L. et al. miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV. Biochem. Biophys. Res. Commun. 398, 771–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Sarma, N. J. et al. Hepatitis C virus mediated changes in miRNA-449a modulates inflammatory biomarker YKL40 through components of the NOTCH signaling pathway. PLoS ONE 7, e50826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, K. et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl Acad. Sci. USA 106, 4402–4407 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yoshioka, W., Higashiyama, W. & Tohyama, C. Involvement of microRNAs in dioxin-induced liver damage in the mouse. Toxicol. Sci. 122, 457–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Yokoi, T. & Nakajima, M. microRNAs as mediators of drug toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 377–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Mohri, T. et al. Human CYP2E1 is regulated by miR-378. Biochem. Pharmacol. 79, 1045–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Dolganiuc, A. et al. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol. Clin. Exp. Res. 33, 1704–1710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wanet, A., Tacheny, A., Arnould, T. & Renard, P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res. 40, 4742–4753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang, Y. et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol. Clin. Exp. Res. 32, 355–364 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Yin, H. et al. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J. Biol. Chem. 287, 9817–9826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yeligar, S., Tsukamoto, H. & Kalra, V. K. Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1α and microrNA-199. J. Immunol. 183, 5232–5243 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Xie, J. et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat. Methods 9, 403–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15 (Suppl. 4), 5–13 (2010).

    Article  PubMed  Google Scholar 

  87. Hou, J. et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19, 232–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ding, J. et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12, 390–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Fornari, F. et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651–5661 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Pineau, P. et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA 107, 264–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Park, J. K. et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 71, 7608–7616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiong, Y. et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51, 836–845 (2010).

    CAS  PubMed  Google Scholar 

  94. Fang, J. H. et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54, 1729–1740 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Braconi, C. et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30, 4750–4756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murakami, Y. et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–2545 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ji, J. et al. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med. 361, 1437–1447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Braconi, C., Henry, J. C., Kogure, T., Schmittgen, T. & Patel, T. The role of microRNAs in human liver cancers. Semin. Oncol. 38, 752–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiang, J. et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin. Cancer Res. 14, 419–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E. & Thorgeirsson, S. S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Padgett, K. A. et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J. Autoimmun. 32, 246–253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Banales, J. M. et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 56, 687–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Poupon, R. et al. Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J. Hepatol. 49, 1038–1045 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Salas, J. T. et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134, 1482–1493 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Qin, B., Huang, F., Liang, Y., Yang, Z. & Zhong, R. Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. J. Gastroenterol. Hepatol. 28, 543–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Castoldi, M. et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest. 121, 1386–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shigehara, K. et al. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS ONE 6, e23584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article  PubMed  Google Scholar 

  114. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Vickers, K. C. & Remaley, A. T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 23, 91–97 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, L. et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Cermelli, S., Ruggieri, A., Marrero, J. A., Ioannou, G. N. & Beretta, L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 6, e23937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji, F. et al. Circulating microRNAs in hepatitis B virus-infected patients. J. Viral Hepat. 18, e242–e251 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Qu, K. Z., Zhang, K., Li, H., Afdhal, N. H. & Albitar, M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J. Clin. Gastroenterol. 45, 355–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Xu, J. et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog. 50, 136–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Gui, J. et al. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin. Sci. (Lond.) 120, 183–193 (2010).

    Article  Google Scholar 

  123. Tomimaru, Y. et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J. Hepatol. 56, 167–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Starkey Lewis, P. J. et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54, 1767–1776 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Tryndyak, V. P. et al. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicol. Appl. Pharmacol. 262, 52–59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Y. et al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem. 56, 1830–1838 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Zahm, A. M., Hand, N. J., Boateng, L. A. & Friedman, J. R. Circulating microRNA is a biomarker of biliary atresia. J. Pediatr. Gastroenterol. Nutr. 55, 366–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Murakami, Y. et al. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS ONE 7, e48366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Szabo, G., Sarnow, P. & Bala, S. MicroRNA silencing and the development of novel therapies for liver disease. J. Hepatol. 57, 462–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1209026

  131. Stenvang, J., Petri, A., Lindow, M., Obad, S. & Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, X. Q., Song, W. J., Sun, T. M., Zhang, P. Z. & Wang, J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol. Pharm. 8, 250–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Su, J., Baigude, H., McCarroll, J. & Rana, T. M. Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res. 39, e38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barrey, E. et al. Pre-microRNA and mature microRNA in human mitochondria. PLoS ONE 6, e20220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bandiera, S. et al. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS ONE 6, e20746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107, 6328–6333 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Y. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 39, 133–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, G. et al. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 3, e381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xin, H. et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556–1564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by NIAAA grant RO1-AA020744 (to G. Szabo).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Gyongyi Szabo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabo, G., Bala, S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10, 542–552 (2013). https://doi.org/10.1038/nrgastro.2013.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing