Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The liver–brain axis in liver failure: neuroinflammation and encephalopathy

Abstract

Systemic inflammation is common in liver failure and its acquisition is a predictor of hepatic encephalopathy severity. New studies provide convincing evidence for a role of neuroinflammation (inflammation of the brain per se) in liver failure; this evidence includes activation of microglia, together with increased synthesis in situ of the proinflammatory cytokines TNF, IL-1β and IL-6. Liver–brain signalling mechanisms in liver failure include: direct effects of systemic proinflammatory molecules, recruitment of monocytes after microglial activation, brain accumulation of ammonia, lactate and manganese, and altered permeability of the blood–brain barrier. Ammonia and cytokines might act synergistically. Existing strategies to reduce ammonia levels (including lactulose, rifaximin and probiotics) have the potential to dampen systemic inflammation, as does albumin dialysis, mild hypothermia and N-acetylcysteine, the latter two agents acting at both peripheral and central sites. Minocycline, an agent with potent central anti-inflammatory properties, reduces neuroinflammation, brain oedema and encephalopathy in liver failure, as does the anti-TNF agent etanercept.

Key Points

  • Both acute and chronic liver failure result in neuroinflammation—an inflammatory response in the central nervous system (CNS) characterized by microglial activation and brain accumulation of proinflammatory cytokines

  • Evidence suggests that neuroinflammation contributes to the pathogenesis of the CNS manifestations of acute and chronic liver failure, including hepatic encephalopathy as well as brain oedema and its complications

  • Liver-to-brain proinflammatory signalling in liver failure involves humoral and neural routes; new evidence indicates that monocyte recruitment, changes in levels of ammonia, lactate, manganese and alterations in blood–brain barrier permeability might also have a key role

  • Many currently available therapies used in the treatment of encephalopathy and brain oedema in liver failure (including lactulose, albumin dialysis and mild hypothermia) have the requisite properties to limit systemic and/or neuroinflammation

  • Early investigations found that anti-inflammatory agents (such as ibuprofen, anti-TNF agents and minocycline) are effective in the treatment of the CNS complications of experimental liver failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Underlying mechanisms of hepatic encepthalopathy.
Figure 2: Microglial activation in the brains of rats with ALF.
Figure 3: Microglial activation in a patient with cirrhosis and mild hepatic encephalopathy imaged using PET and the translocator protein ligand 11C-PK11195.

Similar content being viewed by others

References

  1. Als-Nielsen, B., Gluud, L. L. & Gluud, C. Nonabsorbable disaccharides for hepatic encephalopathy: systematic review of randomised trials. BMJ 328, 1046 (2004).

    Article  CAS  Google Scholar 

  2. Acharya, S. K., Bhatia, V., Sreenivas, V., Khanal, S. & Panda, S. K. Efficacy of L-ornithine L-aspartate in acute liver failure: a double-blind, randomized, placebo-controlled study. Gastroenterology 136, 2159–2168 (2009).

    Article  CAS  Google Scholar 

  3. Rolando, N. et al. The systemic inflammatory response syndrome in acute liver failure. Hepatology 32, 734–739 (2000).

    Article  CAS  Google Scholar 

  4. Shawcross, D. L., Davies, N. A., Williams, R. & Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40, 247–254 (2004).

    Article  CAS  Google Scholar 

  5. Bémeur, C. & Butterworth, R. F. Liver–brain proinflammatory signalling in acute liver failure: role in the pathogenesis of hepatic encephalopathy and brain edema. Metab. Brain Dis. http://dx.doi.org/10.1007/s11011-012-9361-3.

  6. Vaquero, J. et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology 125, 755–764 (2003).

    Article  Google Scholar 

  7. Odeh, M. Pathogenesis of hepatic encephalopathy: the tumour necrosis factor-α theory. Eur. J. Clin. Invest. 37, 291–304 (2007).

    Article  CAS  Google Scholar 

  8. Jiang, W., Desjardins, P. & Butterworth, R. F. Cerebral inflammation contributes to encephalopathy and brain edema in acute liver failure: protective effect of minocycline. J. Neurochem. 109, 485–493 (2009).

    Article  CAS  Google Scholar 

  9. Bernal, W., Donaldson, P., Underhill, J., Wendon, J. & Williams, R. Tumor necrosis factor genomic polymorphism and outcome of acetaminophen (paracetamol)-induced acute liver failure. J. Hepatol. 29, 53–59 (1998).

    Article  CAS  Google Scholar 

  10. Shawcross, D. L. et al. Infection and systemic inflammation, not ammonia, are associated with Grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis. J. Hepatol. 54, 640–649 (2011).

    Article  CAS  Google Scholar 

  11. Jiang, W. et al. Unequivocal evidence for cytokine accumulation in brain in experimental acute liver failure. Hepatology 44 (Suppl.1), 366A (2006).

    Google Scholar 

  12. Wright, G., Shawcross, D., Olde Damink, S. W. & Jalan, R. Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab. Brain Dis. 22, 375–388 (2007).

    Article  CAS  Google Scholar 

  13. Bémeur, C., Vaquero, J., Desjardins, P. & Butterworth, R. F. N-acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms. Metab. Brain Dis. 25, 241–249 (2010).

    Article  Google Scholar 

  14. Bémeur, C., Qu, H., Desjardins, P. & Butterworth, R. F. IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure. Neurochem. Int. 56, 213–215 (2010).

    Article  Google Scholar 

  15. Thrane, V. R. et al. Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy. Neuroscience 220, 247–255 (2012).

    Article  Google Scholar 

  16. McMillin, M. et al. Increased neuronal chemokine CCL2/MCP-1 expression is associated with hepatic encephalopathy and contributes to neurological decline. Hepatology 56 (Suppl.1), 958A (2012).

    Google Scholar 

  17. Butterworth, R. F. Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53, 1372–1376 (2011).

    Article  Google Scholar 

  18. D'Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor α signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  CAS  Google Scholar 

  19. Rodrigo, R. et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139, 675–684 (2010).

    Article  CAS  Google Scholar 

  20. Cauli, O., Rodrigo, R., Piedrafita, B., Boix, J. & Felipo, V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46, 514–519 (2007).

    Article  CAS  Google Scholar 

  21. Brück, J. et al. Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J. Hepatol. 54, 251–257 (2011).

    Article  Google Scholar 

  22. Zemtsova, I. et al. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 54, 204–215 (2011).

    Article  CAS  Google Scholar 

  23. Andersson, A. K. et al. Lactate contributes to ammonia-mediated astroglial dysfunction during hyperammonemia. Neurochem. Res. 34, 556–565 (2009).

    Article  CAS  Google Scholar 

  24. Duchini, A., Govindarajan, S., Santucci, M., Zampi, G. & Hofman, F. M. Effects of tumor necrosis factor-α and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J. Invest. Med. 44, 474–482 (1996).

    CAS  Google Scholar 

  25. Chastre, A., Jiang, W., Desjardins, P. & Butterworth, R. F. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab. Brain Dis. 25, 17–21 (2010).

    Article  CAS  Google Scholar 

  26. Tofteng, F. et al. Cerebral microdialysis in patients with fulminant hepatic failure. Hepatology 36, 1333–1340 (2002).

    Article  Google Scholar 

  27. Mans, A. M., DeJoseph, M. R. & Hawkins, R. A. Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J. Neurochem. 63, 1829–1838 (1994).

    Article  CAS  Google Scholar 

  28. Zwingmann, C., Chatauret, N., Leibfritz, D. & Butterworth, R. F. Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [1H-13C] nuclear magnetic resonance study. Hepatology 37, 420–428 (2003).

    Article  CAS  Google Scholar 

  29. Chatauret, N., Zwingmann, C., Rose, C., Leibfritz, D. & Butterworth, R. F. Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 125, 815–824 (2003).

    Article  CAS  Google Scholar 

  30. Rose, C. et al. Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure. Hepatology 46, 1883–1892 (2007).

    Article  CAS  Google Scholar 

  31. Deutz, N. E., Chamuleau R. A., de Graaf, A. A., Bovée W. M. & de Beer, R. In vivo 31P NMR spectroscopy of the rat cerebral cortex during acute hepatic encephalopathy. NMR Biomed. 1, 101–106 (1988).

    Article  CAS  Google Scholar 

  32. Lai, J. C. & Cooper, A. J. Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47, 1376–1386 (1986).

    Article  CAS  Google Scholar 

  33. Ratnakumari, L. & Murthy, C. R. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci. Lett. 161, 37–40 (1993).

    Article  CAS  Google Scholar 

  34. Pomier-Layrargues, G., Spahr, L. & Butterworth, R. F. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345, 735 (1995).

    Article  CAS  Google Scholar 

  35. Rose, C. et al. Manganese deposition in basal ganglia structures results from both portalsystemic shunting and liver dysfunction. Gastroenterology 117, 640–644 (1999).

    Article  CAS  Google Scholar 

  36. Spahr, L. et al. Magnetic resonance imaging and proton spectroscopic alterations correlate with parkinsonian signs in patients with cirrhosis. Gastroenterology 119, 774–781 (2000).

    Article  CAS  Google Scholar 

  37. Burkhard, P. R., Delavelle, J., Du Pasquier, R. & Spahr, L. Chronic parkinsonism associated with cirrhosis: a distinct subset of acquired hepatocerebral degeneration. Arch. Neurol. 60, 521–528 (2003).

    Article  Google Scholar 

  38. Butterworth R. F. Parkinsonism in cirrhosis: pathogenesis and current therapeutic options. Metab. Brain Dis. http://dx.doi.org/10.1007/s11011-012-9341-7.

  39. Dodd, C. A. & Filipov, N. M. Manganese potentiates LPS-induced heme-oxygenase 1 in microglia but not dopaminergic cells: role in controlling microglial hydrogen peroxide and inflammatory cytokine output. Neurotoxicology 32, 683–692 (2011).

    Article  CAS  Google Scholar 

  40. Zhang, P., Lokuta, K. M., Turner, D. E. & Liu, B. Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astroglia. J. Neurochem. 112, 434–443 (2007).

    Article  Google Scholar 

  41. Filipov, N. M., Seegal, R. F. & Lawrence, D. A. Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor κB-dependent mechanism. Toxicol. Sci. 84, 139–148 (2005).

    Article  CAS  Google Scholar 

  42. de Vries, H. E. et al. The influence of cytokines on the integrity of the blood–brain barrier in vitro. J. Neuroimmunol. 64, 37–43 (1996).

    Article  CAS  Google Scholar 

  43. Didier, N. et al. Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability. J. Neurochem. 86, 246–254 (2003).

    Article  CAS  Google Scholar 

  44. Blamire, A. M. et al. Interleukin-1β -induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J. Neurosci. 20, 8153–8159 (2000).

    Article  CAS  Google Scholar 

  45. Dixit, V. & Chang, T. M. Brain edema and the blood brain barrier in galactosamine-induced fulminant hepatic failure rats. An animal model for evaluation of liver support systems. ASAIO Trans. 36, 21–27 (1990).

    CAS  PubMed  Google Scholar 

  46. Potvin, M., Finlayson, M. H., Hinchey, E. J., Lough, J. O. & Goresky, C. A. Cerebral abnormalities in hepatectomized rats with acute hepatic coma. Lab. Invest. 50, 560–564 (1984).

    CAS  PubMed  Google Scholar 

  47. Traber, P. G., Dal Canto, M., Ganger, D. R. & Blei, A. T. Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood–brain barrier. Hepatology 7, 1272–1277 (1987).

    Article  CAS  Google Scholar 

  48. Kato, M., Hughes, R. D., Keays, R. T. & Williams, R. Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15, 1060–1066 (1992).

    Article  CAS  Google Scholar 

  49. Bélanger, M., Côté, J. & Butterworth, R. F. Neurobiological characterization of an azoxymethane mouse model of acute liver failure. Neurochem. Int. 48, 434–440 (2006).

    Article  Google Scholar 

  50. Sawara, K. et al. Alterations in expression of genes coding for proteins of the neurovascular unit in ischemic liver failure. Neurochem. Int. 55, 119–123 (2009).

    Article  CAS  Google Scholar 

  51. Palenzuela, L., Mas, A., Montaner, J. & Cordoba, J. Matrix metalloproteinase-9 in fulminant hepatic failure. Hepatology 51, 1475–1476 (2010).

    Article  CAS  Google Scholar 

  52. Bémeur, C., Chastre, A., Desjardins, P. & Butterworth, R. F. No changes in expression of tight junction proteins or blood–brain barrier permeability in azoxymethane-induced experimental acute liver failure. Neurochem. Int. 56, 205–207 (2010).

    Article  Google Scholar 

  53. Chen, F. et al. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure. Hepatology 53, 1294–1305 (2011).

    Article  CAS  Google Scholar 

  54. Shimojima, N. et al. Altered expression of zonula occludens-2 precedes increased blood–brain barrier permeability in a murine model of fulminant hepatic failure. J. Invest. Surg. 21, 101–108 (2008).

    Article  Google Scholar 

  55. Nguyen, J. H. Subtle BBB alterations in brain edema associated with acute liver failure. Neurochem. Int. 56, 203–204 (2010).

    Article  CAS  Google Scholar 

  56. Henry, C. J., Huang, Y., Wynne, A. M. & Godbout, J. P. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23, 309–317 (2009).

    Article  CAS  Google Scholar 

  57. Tanaka, S. et al. Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J. Neurosci. Res. 83, 557–566 (2006).

    Article  CAS  Google Scholar 

  58. Chastre, A., Bélanger, M. & Butterworth, R. F. Modest systemic inflammation precipitates encephalopathy and ruptures the blood–brain barrier in acute liver failure. Hepatology 56 (Suppl.1), 956A (2012).

    Google Scholar 

  59. Lockwood, A. H., Yap, E. W. & Wong, W. H. Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cereb. Blood Flow Metab. 11, 337–341 (1991).

    Article  CAS  Google Scholar 

  60. Ruprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric conditions. Nat. Rev. Drug Disc. 9, 971–988 (2010).

    Article  Google Scholar 

  61. Itzhak, Y., Roig-Cantisano, A., Dombro, R. S. & Norenberg, M. D. Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res. 705, 345–348 (1995).

    Article  CAS  Google Scholar 

  62. Bélanger, M., Ahboucha, S., Desjardins, P. & Butterworth, R. F. Upregulation of peripheral-type (mitochondrial) benzodiazepine receptors in hyperammonemic syndromes: consequences for neuronal excitability. Adv. Mol. Cell Biol. 31, 983–997 (2004).

    Article  Google Scholar 

  63. Giguère, J. F., Hamel, E. & Butterworth, R. F. Increased densities of binding sites for the 'peripheral-type' benzodiazepine receptor ligand [3H]PK 11195 in rat brain following portacaval anastomosis. Brain Res. 585, 295–298 (1992).

    Article  Google Scholar 

  64. Desjardins, P., Bandeira, P., Rao, V. L. & Butterworth, R. F. Portacaval anastomosis causes selective alterations of peripheral-type benzodiazepine receptor expression in rat brain and peripheral tissues. Neurochem. Int. 35, 293–299 (1999).

    Article  CAS  Google Scholar 

  65. Lavoie, J., Layrargues, G. P. & Butterworth, R. F. Increased densities of peripheral-type benzodiazepine receptors in brain autopsy samples from cirrhotic patients with hepatic encephalopathy. Hepatology 11, 874–878 (1990).

    Article  CAS  Google Scholar 

  66. Oh, U. et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J. Neuroimmune Pharmacol. 6, 354–361 (2011).

    Article  Google Scholar 

  67. Cagnin, A., Taylor-Robinson, S. D., Forton, D. M. & Banati R. B. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 55, 547–553 (2006).

    Article  CAS  Google Scholar 

  68. Prasad, S. et al. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45, 549–559 (2007).

    Article  Google Scholar 

  69. Bass, N. M. et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 362, 1071–1081 (2010).

    Article  CAS  Google Scholar 

  70. Kircheis, G. et al. Therapeutic efficacy of L-ornithine-L-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: results of a placebo-controlled, double-blind study. Hepatology 25, 1351–1360 (1997).

    Article  CAS  Google Scholar 

  71. Odeh, M., Sabo, E., Srugo, I. & Oliven, A. Serum levels of tumor necrosis factor-α correlate with severity of hepatic encephalopathy due to chronic liver failure. Liver Int. 24, 110–116 (2004).

    Article  CAS  Google Scholar 

  72. Wright, G. et al. Reduction in hyperammonemia by ornithine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int. 32, 410–419 (2012).

    CAS  PubMed  Google Scholar 

  73. Agrawal, A., Sharma, B. C., Sharma, P. & Sarin, S. K. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am. J. Gastroenterol. 107, 1043–1050 (2012).

    Article  CAS  Google Scholar 

  74. Cauli, O. et al. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity. J. Neurosci. Res. 87, 1369–1374 (2009).

    Article  CAS  Google Scholar 

  75. Chastre, A. et al. Inflammatory cascades driven by tumor necrosis factor-α play a major role in the progression of acute liver failure and its neurological complications. PLoS ONE 7, e49670 (2012).

    Article  CAS  Google Scholar 

  76. Guo, L. M. et al. Application of Molecular Adsorbents Recirculating System to remove NO and cytokines in severe liver failure patients with multiple organ dysfunction syndrome. Liver Int. 23 (Suppl.3), 16–20 (2003).

    Article  CAS  Google Scholar 

  77. Jalan, R., Olde Daminck, S. W., Deutz, M. E., Lee, A. & Hayes, P. C. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354, 1164–1168 (1999).

    Article  CAS  Google Scholar 

  78. Vaquero, J. et al. Mild hypothermia attenuates liver injury and improves survival in mice with acetaminophen toxicity. Gastroenterology 132, 372–383 (2007).

    Article  CAS  Google Scholar 

  79. Jiang, W., Desjardins, P. & Butterworth, R. F. Direct evidence for central proinflammatory mechanisms in rats with experimental acute liver failure: protective effect of hypothermia. J. Cereb. Blood Flow Metab. 29, 944–952 (2009).

    Article  CAS  Google Scholar 

  80. Chen, G., Shi, J., Hu, Z. & Hang, C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008, 716458 (2008).

    Article  Google Scholar 

  81. Stirling, D. P., Koochesfahani, K. M., Steeves, J. D. & Tetzlaff, W. Minocycline as a neuroprotective agent. Neuroscientist 11, 308–322 (2005).

    Article  CAS  Google Scholar 

  82. Jiang, W., Desjardins, P. & Butterworth, R. F. Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem. Int. 55, 601–605 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

R. F. Butterworth has served as consultant and benefited from financial support as a speaker at conferences in an ad hoc manner from the following pharmaceutical companies: Merz Pharmaceuticals, Otsuka Pharmaceuticals and Salix Pharmaceuticals. The author and his family have no direct financial interests in any of these companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterworth, R. The liver–brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol 10, 522–528 (2013). https://doi.org/10.1038/nrgastro.2013.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing