Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evaluation of indeterminate biliary strictures

An Erratum to this article was published on 02 November 2017

This article has been updated

Key Points

  • Biliary strictures often present a diagnostic challenge in differentiating benign from malignant causes

  • Pre-operative diagnostic testing including laboratory, imaging, and endoscopic modalities can establish a diagnosis in most patients, but indeterminate lesions still account for up to 20% of cases

  • Novel biomarkers and endoscopic techniques are increasingly improving the diagnostic yield and should reduce unnecessary surgeries on benign strictures

Abstract

Biliary strictures frequently present a diagnostic challenge during pre-operative evaluation to determine their benign or malignant nature. A variety of benign conditions, such as primary sclerosing cholangitis (PSC) and IgG4-related sclerosing cholangitis, frequently mimic malignancies. In addition, PSC and other chronic biliary diseases increase the risk of cholangiocarcinoma and so require ongoing vigilance. Although traditional methods of evaluation including imaging, detection of circulating tumour markers, and sampling by endoscopic ultrasound and endoscopic retrograde cholangiopancreatography have a high specificity, they suffer from low sensitivity. Currently, up to 20% of biliary strictures remain indeterminate after pre-operative evaluation and necessitate surgical intervention for a definitive diagnosis. The discovery of novel biomarkers, new imaging modalities and advanced endoscopic techniques suggests that a multimodality approach might lead to better diagnostic accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IgG4-related sclerosing cholangitis presenting with a pancreatic mass and biliary stricture.
Figure 2: Primary sclerosing cholangitis presenting with a mass of the common bile duct.
Figure 3: Algorithm for the evaluation of a distal biliary stricture in the absence of an obvious cause.
Figure 4: Algorithm for the evaluation of a proximal biliary stricture or distal stricture with a non-diagnostic EUS.

Similar content being viewed by others

Change history

  • 02 November 2017

    In the version of this article originally published online and in print, the main text incorrectly specified endoscopic ultrasonography (EUS)-guided fine-needle aspiration (FNA) when referring to reference 104 and the potential for seeding of tumours, when the study discussed FNA in general. The sentences should have read: "Despite the potential benefits of EUS-guided FNA, concerns have been raised about FNA in general and potential seeding along the needle tract resulting in peritoneal metastases103. In a study of 16 patients who had an FNA before pre-liver-transplantation laparoscopic staging, five of six patients with a FNA demonstrating malignancy upon cytological examination had peritoneal metastases identified104." This error has been corrected in the HTML and PDF versions of the article.

References

  1. Tummala, P., Munigala, S., Eloubeidi, M. A. & Agarwal, B. Patients with obstructive jaundice and biliary stricture ± mass lesion on imaging: prevalence of malignancy and potential role of EUS-FNA. J. Clin. Gastroenterol. 47, 532–537 (2013).

    Article  PubMed  Google Scholar 

  2. Hayat, J. O., Loew, C. J., Asrress, K. N., McIntyre, A. S. & Gorard, D. A. Contrasting liver function test patterns in obstructive jaundice due to biliary strictures [corrected] and stones. QJM 98, 35–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Clayton, R. A. et al. Incidence of benign pathology in patients undergoing hepatic resection for suspected malignancy. Surgeon 1, 32–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gerhards, M. F. et al. Incidence of benign lesions in patients resected for suspicious hilar obstruction. Br. J. Surg. 88, 48–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Corvera, C. U. et al. Clinical and pathologic features of proximal biliary strictures masquerading as hilar cholangiocarcinoma. J. Am. Coll. Surg. 201, 862–869 (2005).

    Article  PubMed  Google Scholar 

  6. Wakai, T. et al. Clinicopathological features of benign biliary strictures masquerading as biliary malignancy. Am. Surg. 78, 1388–1391 (2012).

    PubMed  Google Scholar 

  7. Lee, J. G., Leung, J. W., Baillie, J., Layfield, L. J. & Cotton, P. B. Benign, dysplastic, or malignant—making sense of endoscopic bile duct brush cytology: results in 149 consecutive patients. Am. J. Gastroenterol. 90, 722–726 (1995).

    CAS  PubMed  Google Scholar 

  8. Glasbrenner, B. et al. Prospective evaluation of brush cytology of biliary strictures during endoscopic retrograde cholangiopancreatography. Endoscopy 31, 712–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Fogel, E. L. et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest. Endosc. 63, 71–77 (2006).

    Article  PubMed  Google Scholar 

  10. Bergquist, A. et al. Hepatic and extrahepatic malignancies in primary scleroing cholangitis. J. Hep. 36, 321–327 (2002).

    Article  Google Scholar 

  11. Wherry, D. C., Marohn, M. R., Malanoski, M. P., Hetz, S. P. & Rich, N. M. An external audit of laparoscopic cholecystectomy in the steady state performed in medical treatment facilities of the Department of Defense. Ann. Surg. 224, 145–154 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adamsen, S. et al. Bile duct injury during laparoscopic cholecystectomy: a prospective nationwide series. J. Am. Coll. Surg. 184, 571–578 (1997).

    CAS  PubMed  Google Scholar 

  13. Fletcher, D. R. et al. Complications of cholecystectomy: risks of the laparoscopic approach and protective effects of operative cholangiography: a population-based study. Ann. Surg. 229, 449–457 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roslyn, J. J. et al. Open cholecystectomy: a contemporary analysis of 42,474 patients. Ann. Surg. 218, 129–137 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karvonen, J., Gullichsen, R., Laine, S., Salminen, P. & Gronroos, J. M. Bile duct injuries during laparoscopic cholecystectomy: primary and long-term results from a single institution. Surg. Endosc. 21, 1069–1073 (2007).

    Article  PubMed  Google Scholar 

  16. Flum, D. R., Cheadle, A., Prela, C., Dellinger, E. P. & Chan, L. Bile duct injury during cholecystectomy and survival in medicare beneficiaries. JAMA 290, 2168–2173 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Karvonen, J., Salminen, P. & Gronroos, J. M. Bile duct injuries during open and laparoscopic cholecystectomy in the laparoscopic era: alarming trends. Surg. Endosc. 25, 2906–2910 (2011).

    Article  PubMed  Google Scholar 

  18. Chuang, K. I., Corley, D., Postlethwaite, D. A., Merchant, M. & Harris, H. W. Does increased experience with laparoscopic cholecystectomy yield more complex bile duct injuries? Am. J. Surg. 203, 480–487 (2012).

    Article  PubMed  Google Scholar 

  19. Richardson, M. C., Bell, G. & Fullarton, G. M. Incidence and nature of bile duct injuries following laparoscopic cholecystectomy: an audit of 5913 cases. West of Scotland Laparoscopic Cholecystectomy Audit Group. Br. J. Surg. 83, 1356–1360 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Thuluvath, P. J., Pfau, P. R., Kimmey, M. B. & Ginsberg, G. G. Biliary complications after liver transplantation: the role of endoscopy. Endoscopy 37, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Akamatsu, N., Sugawara, Y. & Hashimoto, D. Biliary reconstruction, its complications and management of biliary complications after adult liver transplantation: a systematic review of the incidence, risk factors and outcome. Transpl. Int. 24, 379–392 (2011).

    Article  PubMed  Google Scholar 

  22. Verdonk, R. C. et al. Nonanastomotic biliary strictures after liver transplantation, part 2: management, outcome, and risk factors for disease progression. Liver Transpl. 13, 725–732 (2007).

    Article  PubMed  Google Scholar 

  23. Sundaram, V. et al. Posttransplant biliary complications in the pre- and post-model for end-stage liver disease era. Liver Transpl. 17, 428–435 (2011).

    Article  PubMed  Google Scholar 

  24. Guichelaar, M. M. et al. Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation. Am. J. Transplant. 3, 885–890 (2003).

    Article  PubMed  Google Scholar 

  25. Yimam, K. K. & Bowlus, C. L. Diagnosis and classification of primary sclerosing cholangitis. Autoimmun. Rev. 13, 445–450 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J. et al. Antimitochondrial antibody recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. J. Immunol. 191, 2126–2133 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuda, M. et al. Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 54, 1293–1302 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Selmi, C., Bowlus, C. L., Gershwin, M. E. & Coppel, R. L. Primary biliary cirrhosis. Lancet 377, 1600–1609 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Lleo, A. et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52, 987–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Gupta, A. & Bowlus, C. L. Primary sclerosing cholangitis: etiopathogenesis and clinical management. Front. Biosci. (Elite Ed) 4, 1683–1705 (2012).

    Article  Google Scholar 

  31. Nakazawa, T. et al. Clinical differences between primary sclerosing cholangitis and sclerosing cholangitis with autoimmune pancreatitis. Pancreas 30, 20–25 (2005).

    PubMed  Google Scholar 

  32. Chari, S. T. Diagnosis of autoimmune pancreatitis using its five cardinal features: introducing the Mayo Clinic's HISORt criteria. J. Gastroenterol. 42, 39–41 (2007).

    Article  PubMed  Google Scholar 

  33. Kennedy, P. T. et al. Natural history of hepatic sarcoidosis and its response to treatment. Eur. J. Gastroenterol. Hepatol 18, 721–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Alam, I., Levenson, S. D., Ferrell, L. D. & Bass, N. M. Diffuse intrahepatic biliary strictures in sarcoidosis resembling sclerosing cholangitis. Dig. Dis. Sci. 42, 1295–1301 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Nashed, C., Sakpal, S. V., Shusharina, V. & Chamberlain, R. S. Eosinophilic cholangitis and cholangiopathy: a sheep in wolves clothing. HPB Surg. 2010, 906496 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baron, T. H., Koehler, R. E., Rodgers, W. H., Fallon, M. B. & Ferguson, S. M. Mast cell cholangiopathy: another cause of sclerosing cholangitis. Gastroenterology 109, 1677–1681 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ryu, J. K. et al. Clinical features of chronic pancreatitis in Korea: a multicenter nationwide study. Digestion 72, 207–211 (2005).

    Article  PubMed  Google Scholar 

  38. Wang, L. W. et al. Prevalence and clinical features of chronic pancreatitis in China: a retrospective multicenter analysis over 10 years. Pancreas 38, 248–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Balakrishnan, V. et al. Chronic pancreatitis. A prospective nationwide study of 1,086 subjects from India. JOP 9, 593–600 (2008).

    PubMed  Google Scholar 

  40. Bekker, J., Ploem, S. & de Jong, K. P. Early hepatic artery thrombosis after liver transplantation: a systematic review of the incidence, outcome and risk factors. Am. J. Transplant. 9, 746–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Gelbmann, C. M. et al. Ischemic-like cholangiopathy with secondary sclerosing cholangitis in critically ill patients. Am. J. Gastroenterol. 102, 1221–1229 (2007).

    Article  PubMed  Google Scholar 

  42. Abdalian, R. & Heathcote, E. J. Sclerosing cholangitis: a focus on secondary causes. Hepatology 44, 1063–1074 (2006).

    Article  PubMed  Google Scholar 

  43. Dhiman, R. K. et al. Portal cavernoma cholangiopathy: consensus statement of a working party of the Indian national association for study of the liver. J. Clin. Exp. Hepatol. 4, S2–S14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vakil, N. B. et al. Biliary cryptosporidiosis in HIV-infected people after the waterborne outbreak of cryptosporidiosis in Milwaukee. N. Engl. J. Med. 334, 19–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, X. M., Keithly, J. S., Paya, C. V. & LaRusso, N. F. Cryptosporidiosis. N. Engl. J. Med. 346, 1723–1731 (2002).

    Article  PubMed  Google Scholar 

  46. Tsui, W. M., Lam, P. W., Lee, W. K. & Chan, Y. K. Primary hepatolithiasis, recurrent pyogenic cholangitis, and oriental cholangiohepatitis: a tale of 3 countries. Adv. Anat. Pathol. 18, 318–328 (2011).

    Article  PubMed  Google Scholar 

  47. Lin, C. C., Lin, P. Y. & Chen, Y. L. Comparison of concomitant and subsequent cholangiocarcinomas associated with hepatolithiasis: clinical implications. World J. Gastroenterol. 19, 375–380 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vasiliadis, K. et al. Mid common bile duct inflammatory pseudotumor mimicking cholangiocarcinoma. A case report and literature review. Int. J. Surg. Case Rep. 5, 12–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Oz Puyan, F. et al. Inflammatory pseudotumor of the spleen with EBV positivity: report of a case. Eur. J. Haematol. 72, 258–291 (2004).

    Article  Google Scholar 

  50. Koea, J., Holden, A., Chau, K. & McCall, J. Differential diagnosis of stenosing lsions at the hepatic hilus. World J. Surg. 28, 466–470 (2004).

    Article  PubMed  Google Scholar 

  51. Are, C. et al. Differential diagnosis of proximal biliary obstruction. Surgery 140, 756–763 (2006).

    Article  PubMed  Google Scholar 

  52. Uhlmann, D. et al. Management and outcome in patient with Klatskin-mimicking lesions of the biliary tree. J. Gastrointest. Surg. 10, 1144–1150 (2006).

    Article  PubMed  Google Scholar 

  53. Kim, H. J. et al. A new strategy for the application of CA19-9 in the differentiation of pancreaticobiliary cancer: analysis using a receiver operating characteristic curve. Am. J. Gastroenterol. 94, 1941–1946 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19–19) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Burnett, A. S., Bailey, J., Oliver, J. B., Ahlawat, S. & Chokshi, R. J. Sensitivity of alternative testing for pancreaticobiliary cancer: a 10-y review of the literature. J. Surg. Res. 190, 535–547 (2014).

    Article  PubMed  Google Scholar 

  56. Chalasani, N. et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology 31, 7–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Levy, C. et al. The value of serum CA 19–19 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig. Dis. Sci. 50, 1734–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Narimatsu, H. et al. Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res. 58, 512–518 (1998).

    CAS  PubMed  Google Scholar 

  59. Nishihara, S. et al. Molecular genetic analysis of the human Lewis histo-blood group system. J. Biol. Chem. 269, 29271–29278 (1994).

    CAS  PubMed  Google Scholar 

  60. Mollicone, R. et al. Molecular basis for Lewis α(1,3/1,4)-fucosyltransferase gene deficiency (FUT3) found in Lewis-negative Indonesian pedigrees. J. Biol. Chem. 269, 20987–20994 (1994).

    CAS  PubMed  Google Scholar 

  61. Wannhoff, A. et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J. Hepatol. 59, 1278–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, J. et al. Identification and verification of transthyretin as a potential biomarker for pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol. 139, 1117–1127 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Leelawat, K., Narong, S., Wannaprasert, J. & Ratanashu-ek, T. Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J. Gastroenterol. 16, 4697–4703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lumachi, F. et al. Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19–9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary case–control study. Anticancer Res. 34, 6663–6667 (2014).

    CAS  PubMed  Google Scholar 

  65. Kishimoto, T. et al. Plasma miR-21 is a novel diagnostic biomarker for biliary tract cancer. Cancer Sci. 104, 1626–1631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, J. et al. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Nesbit, G. M. et al. Cholangiocarcinoma: diagnosis and evaluation of resectability by CT and sonography as procedures complementary to cholangiography. AJR Am. J. Roentgenol. 151, 933–938 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Tillich, M., Michinger, H. J., Preisegger, K. H., Rabl, H. & Szolar, D. H. Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am. J. Roentgenol. 171, 651–658 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Rösch, T. et al. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastrointest. Endosc. 55, 870–876 (2002).

    Article  PubMed  Google Scholar 

  70. Heinzow, H. S. et al. Comparative analysis of ERCP, IDUS, EUS and CT in predicting malignant bile duct strictures. World J. Gastroenterol. 20, 10495–10503 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kim, T. K. et al. Peripheral cholangiocarcinoma of the liver: two-phase spiral CT findings. Radiology 204, 539–543 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Kang, Y., Lee, J. M., Kim, S. H., Han, J. K. & Choi, B. I. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264, 751–760 (2012).

    Article  PubMed  Google Scholar 

  73. Rimola, J. et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50, 791–798 (2009).

    Article  PubMed  Google Scholar 

  74. Tillich, M., Mischinger, H. J., Preisegger, K. H., Rabl, H. & Szolar, D. H. Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am. J. Roentgenol. 171, 651–658 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rosch, T. et al. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastrointest. Endosc. 55, 870–876 (2002).

    Article  PubMed  Google Scholar 

  76. Saluja, S. S., Sharma, R., Pal, S., Sahni, P. & Chattopadhyay, T. K. Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: a prospective study. HPB (Oxford) 9, 373–382 (2007).

    Article  Google Scholar 

  77. Romagnuolo, J. et al. Magnetic resonance cholangiopancreatography: a meta-analysis of test performance in suspected biliary disease. Ann. Intern. Med. 139, 547–557 (2003).

    Article  PubMed  Google Scholar 

  78. Guarise, A., Venturini, S., Faccioli, N., Pinali, L. & Morana, G. Role of magnetic resonance in characterising extrahepatic cholangiocarcinomas. Radiol. Med. 111, 526–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Cui, X. Y. & Chen, H. W. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma. World J. Gastroenterol. 16, 3196–3201 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Park, H. J. et al. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures. Eur. Radiol. 24, 947–958 (2014).

    Article  PubMed  Google Scholar 

  81. Burnett, A. S., Calvert, T. J. & Chokshi, R. J. Sensitivity of endoscopic retrograde cholangiopancreatography standard cytology: 10-y review of the literature. J. Surg. Res. 184, 304–311 (2013).

    Article  PubMed  Google Scholar 

  82. Ponchon, T. et al. Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: results of a prospective study. Gastrointest. Endosc. 42, 565–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Schoefl, R. et al. Forceps biopsy and brush cytology during endoscopic retrograde cholangiopancreatography for the diagnosis of biliary stenoses. Scand. J. Gastroenterol. 32, 363–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Navaneethan, U. et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest. Endosc. 81, 168–176 (2015).

    Article  PubMed  Google Scholar 

  85. Kalaitzakis, E. et al. Endoscopic retrograde cholangiography does not reliably distinguish IgG4-associated cholangitis from primary sclerosing cholangitis or cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 9, 800–803.e2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kawakami, H. et al. IgG4-related sclerosing cholangitis and autoimmune pancreatitis: histological assessment of biopsies from Vater's ampulla and the bile duct. J. Gastroenterol. Hepatol. 25, 1648–1655 (2010).

    Article  PubMed  Google Scholar 

  87. Kipp, B. R. et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am. J. Gastroenterol. 99, 1675–1681 (2004).

    Article  PubMed  Google Scholar 

  88. Moreno Luna, L. E. et al. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterology 131, 1064–1072 (2006).

    Article  PubMed  Google Scholar 

  89. Fritcher, E. G. et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures. Gastroenterology 136, 2180–2186 (2009).

    Article  PubMed  Google Scholar 

  90. Smoczynski, M. et al. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures. Gastrointest. Endosc. 75, 65–73 (2012).

    Article  PubMed  Google Scholar 

  91. Barr Fritcher, E. G. et al. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy. Am. J. Clin. Pathol. 128, 272–279 (2007).

    Article  PubMed  Google Scholar 

  92. Nanda, A. et al. Triple modality testing by endoscopic retrograde cholangiopancreatography for the diagnosis of cholangiocarcinoma. Therap. Adv. Gastroenterol. 8, 56–65 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alvaro, D. et al. Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis. Ann. Intern. Med. 147, 451–459 (2007).

    Article  PubMed  Google Scholar 

  94. Lankisch, T. O. et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology 53, 875–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Navaneethan, U. et al. Lipidomic profiling of bile in distinguishing benign from malignant biliary strictures: a single-blinded pilot study. Am. J. Gastroenterol. 109, 895–902 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, J. H., Salem, R., Aslanian, H., Chacho, M. & Topazian, M. Endoscopic ultrasound and fine-needle aspiration of unexplained bile duct strictures. Am. J. Gastroenterol. 99, 1069–1073 (2004).

    Article  PubMed  Google Scholar 

  97. Eloubeidi, M. A. et al. Endoscopic ultrasound-guided fine needle aspiration biopsy of suspected cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 2, 209–213 (2004).

    Article  PubMed  Google Scholar 

  98. Rosch, T. et al. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastrointest. Endosc. 60, 390–396 (2004).

    Article  PubMed  Google Scholar 

  99. Meara, R. S. et al. Endoscopic ultrasound-guided FNA biopsy of bile duct and gallbladder: analysis of 53 cases. Cytopathology 17, 42–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. DeWitt, J., Misra, V. L., Leblanc, J. K., McHenry, L. & Sherman, S. EUS-guided FNA of proximal biliary strictures after negative ERCP brush cytology results. Gastrointest. Endosc. 64, 325–333 (2006).

    Article  PubMed  Google Scholar 

  101. Mohamadnejad, M. et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest. Endosc. 73, 71–78 (2011).

    Article  PubMed  Google Scholar 

  102. Levy, M. J., Heimbach, J. K. & Gores, G. J. Endoscopic ultrasound staging of cholangiocarcinoma. Curr. Opin. Gastroenterol. 28, 244–252 (2012).

    Article  PubMed  Google Scholar 

  103. Topazian, M. Endoscopic ultrasonography in the evaluation of indeterminate biliary strictures. Clin. Endosc. 45, 328–330 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Heimbach, J. K., Sanchez, W., Rosen, C. B. & Gores, G. J. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford) 13, 356–360 (2011).

    Article  Google Scholar 

  105. El Chafic, A. H. et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy 45, 883–889 (2013).

    Article  PubMed  Google Scholar 

  106. Stavropoulos, S., Larghi, A., Verna, E., Battezzati, P. & Stevens, P. Intraductal ultrasound for the evaluation of patients with biliary strictures and no abdominal mass on computed tomography. Endoscopy 37, 715–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Vazquez-Sequeiros, E. et al. Evaluation of indeterminate bile duct strictures by intraductal US. Gastrointest. Endosc. 56, 372–379 (2002).

    Article  PubMed  Google Scholar 

  108. Domagk, D. et al. Endoscopic retrograde cholangiopancreatography, intraductal ultrasonography, and magnetic resonance cholangiopancreatography in bile duct strictures: a prospective comparison of imaging diagnostics with histopathological correlation. Am. J. Gastroenterol. 99, 1684–1689 (2004).

    Article  PubMed  Google Scholar 

  109. Meister, T. et al. Intraductal ultrasound substantiates diagnostics of bile duct strictures of uncertain etiology. World J. Gastroenterol. 19, 874–881 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen, Y. K. et al. Single-operator cholangioscopy in patients requiring evaluation of bile duct disease or therapy of biliary stones (with videos). Gastrointest. Endosc. 74, 805–814 (2011).

    Article  PubMed  Google Scholar 

  111. Manta, R. et al. SpyGlass single-operator peroral cholangioscopy in the evaluation of indeterminate biliary lesions: a single-center, prospective, cohort study. Surg. Endosc. 27, 1569–1572 (2013).

    Article  PubMed  Google Scholar 

  112. Ramchandani, M. et al. Role of single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary lesions: a single-center, prospective study. Gastrointest. Endosc. 74, 511–519 (2011).

    Article  PubMed  Google Scholar 

  113. Woo, Y. S. et al. Role of SpyGlass peroral cholangioscopy in the evaluation of indeterminate biliary lesions. Dig. Dis. Sci. 59, 2565–2570 (2014).

    Article  PubMed  Google Scholar 

  114. Nishikawa, T. et al. Comparison of the diagnostic accuracy of peroral video-cholangioscopic visual findings and cholangioscopy-guided forceps biopsy findings for indeterminate biliary lesions: a prospective study. Gastrointest. Endosc. 77, 219–226 (2013).

    Article  PubMed  Google Scholar 

  115. Liu, R. et al. Peroral cholangioscopy facilitates targeted tissue acquisition in patients with suspected cholangiocarcinoma. Minerva Gastroenterol. Dietol. 60, 127–133 (2014).

    CAS  PubMed  Google Scholar 

  116. Farnik, H. et al. A multicenter study on the role of direct retrograde cholangioscopy in patients with inconclusive endoscopic retrograde cholangiography. Endoscopy 46, 16–21 (2014).

    Article  PubMed  Google Scholar 

  117. Hartman, D. J., Slivka, A., Giusto, D. A. & Krasinskas, A. M. Tissue yield and diagnostic efficacy of fluoroscopic and cholangioscopic techniques to assess indeterminate biliary strictures. Clin. Gastroenterol. Hepatol. 10, 1042–1046 (2012).

    Article  PubMed  Google Scholar 

  118. Siddiqui, A. A. et al. Identification of cholangiocarcinoma by using the Spyglass Spyscope system for peroral -cholangioscopy and biopsy collection. Clin. Gastroenterol. Hepatol. 10, 466–471 (2012).

    Article  PubMed  Google Scholar 

  119. Osanai, M. et al. Peroral video cholangioscopy to evaluate indeterminate bile duct lesions and preoperative mucosal cancerous extension: a prospective multicenter study. Endoscopy 45, 635–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Tieu, A. H. et al. Diagnostic and therapeutic utility of SpyGlass® peroral cholangioscopy in intraductal biliary disease: single-center, retrospective, cohort study. Dig. Endosc. 27, 479–485 (2015).

    Article  PubMed  Google Scholar 

  121. Draganov, P. V. et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: a prospective, long-term follow-up study. Gastrointest. Endosc. 75, 347–353 (2012).

    Article  PubMed  Google Scholar 

  122. Navaneethan, U. et al. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest. Endosc. 82, 608–614.e2. (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Itoi, T. et al. The role of peroral video cholangioscopy in patients with IgG4-related sclerosing cholangitis. J. Gastroenterol. 48, 504–514 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Kalaitzakis, E. et al. Diagnostic utility of single-user peroral cholangioscopy in sclerosing cholangitis. Scand. J. Gastroenterol. 49, 1237–1244 (2014).

    Article  PubMed  Google Scholar 

  125. Slivka, A. et al. Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy for the characterization of indeterminate biliary strictures: results of a prospective multicenter international study. Gastrointest. Endosc. 81, 282–290 (2015).

    Article  PubMed  Google Scholar 

  126. Meining, A. et al. Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience. Gastrointest. Endosc. 74, 961–968 (2011).

    Article  PubMed  Google Scholar 

  127. Kahaleh, M. et al. Probe-based confocal laser endomicroscopy for indeterminate biliary strictures: refinement of the image interpretation classification. Gastroenterol. Res. Pract. 2015, 675210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Talreja, J. P. et al. Interpretation of probe-based confocal laser endomicroscopy of indeterminate biliary strictures: is there any interobserver agreement? Dig. Dis. Sci. 57, 3299–3302 (2012).

    Article  PubMed  Google Scholar 

  129. Talreja, J. P. et al. Pre- and post-training session evaluation for interobserver agreement and diagnostic accuracy of probe-based confocal laser endomicroscopy for biliary strictures. Dig. Endosc. 26, 577–580 (2014).

    Article  PubMed  Google Scholar 

  130. Oseini, A. M. et al. Utility of serum immunoglobulin G4 in distinguishing immunoglobulin G4-associated cholangitis from cholangiocarcinoma. Hepatology 54, 940–948 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Nakazawa, T. et al. Diagnostic criteria for IgG4-related sclerosing cholangitis based on cholangiographic classification. J. Gastroenterol. 47, 79–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Barr Fritcher, E. G. et al. Primary sclerosing cholangitis with equivocal cytology: fluorescence in situ hybridization and serum CA 19–9 predict risk of malignancy. Cancer Cytopathol. 121, 708–717 (2013).

    Article  PubMed  CAS  Google Scholar 

  133. Lindor, K. D., Kowdley, K. V. & Harrison, M. E. ACG clinical guideline: primary sclerosing cholangitis. Am. J. Gastroenterol. 110, 646–659 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from NIDDK (R21DK100897 to C.L.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.L.B researched the data and developed the content and writing. K.A.O. provided the histologic images and descriptions. All authors contributed equally to editing and reviewing of the article.

Corresponding author

Correspondence to Christopher L. Bowlus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowlus, C., Olson, K. & Gershwin, M. Evaluation of indeterminate biliary strictures. Nat Rev Gastroenterol Hepatol 13, 28–37 (2016). https://doi.org/10.1038/nrgastro.2015.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.182

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer