Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cystic fibrosis from the gastroenterologist's perspective

Key Points

  • Cystic fibrosis is a life-limiting disease caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and can vary in severity and manifestation

  • The majority of patients with cystic fibrosis survive into adulthood and transition into the care of adult gastroenterologists

  • Besides the well-known pulmonary and pancreatic consequences, cystic fibrosis is a multiorgan disease that also affects the hepatobiliary and gastrointestinal tracts

  • Adult-specific gastrointestinal complications in those with cystic fibrosis are emerging, in particular biliary and gastrointestinal tract malignancies

  • Novel therapies specifically targeting the defects in processing or function of the CFTR protein are available, providing opportunities to better understand disease mechanisms and use intestinal endpoints in clinical trials

Abstract

Cystic fibrosis is a life-limiting, recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Increased survival outcomes and the multisystem nature of the disease, including the involvement of hepatobiliary and gastrointestinal tracts, now require the need for more extensive knowledge and expertise in cystic fibrosis among gastroenterologists. Manifestations are either a direct consequence of the primary defect in cystic fibrosis or a secondary complication of the disease or therapy. Adult patients with cystic fibrosis also have an increased risk of malignancy in the gastrointestinal and pancreatico-biliary tracts compared with the general population. Novel treatments that target the basic defects in the CFTR protein have emerged, but to date not much is known about their effects on the gastrointestinal and hepatobiliary systems. The introduction of such therapies has provided new opportunities for the application of intestinal endpoints in clinical trials and the understanding of underlying disease mechanisms that affect the gut in cystic fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gastrointestinal, hepatobiliary and pancreatic manifestations and complications of cystic fibrosis.
Figure 2: Proposed pathogenesis of liver disease related to cystic fibrosis.
Figure 3: Alterations in the intestinal milieu and the proposed pathogenic factors associated with the development of an altered intestinal microbiota (dysbiosis) in cystic fibrosis.

Similar content being viewed by others

References

  1. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Walters, S. & Mehta, A. in Cystic Fibrosis 3rd edn (eds Hodson, M. et al.) 21–45 (Edward Arnold Ltd, 2007).

    Google Scholar 

  3. Cystic Fibrosis Foundation. Patient Registry Annual Data Report. [online], (2013).

  4. Cystic Fibrosis Canada. 2013 annual report. The Canadian Cystic Fibrosis Patient Data Registry. [online], (2013).

  5. Neglia, J. P. et al. The risk of cancer among patients with cystic fibrosis. N. Engl. J. Med. 332, 494–499 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Maisonneuve, P. et al. Cancer risk in nontransplanted and transplanted cystic fibrosis patients: a 10-year study. J. Natl Cancer Inst. 95, 381–387 (2003).

    Article  PubMed  Google Scholar 

  7. Maisonneuve, P. et al. Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States. J. Natl Cancer Inst. 105, 122–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gilljam, K. et al. Clinical manifestations of cystic fibrosis among patients diagnosed in adulthood. Chest 126, 1215–1224 (2004).

    Article  PubMed  Google Scholar 

  9. Ooi, C. Y. et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology 140, 153–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Ooi, C. Y. et al. Comparing the American and European diagnostic guidelines for cystic fibrosis: same disease, different language? Thorax 67, 618–624 (2012).

    Article  PubMed  Google Scholar 

  11. Ooi, C. Y. et al. Does extensive genotyping and nasal potential difference testing clarify the diagnosis of cystic fibrosis among patients with single-organ manifestations of cystic fibrosis? Thorax 69, 254–260 (2014).

    Article  PubMed  Google Scholar 

  12. Ooi, C. Y. & Durie, P. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J. Cyst. Fibros. 11, 355–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wainwright, C. E. et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beaudet, A. L. & Tsui, L.-C. A suggested nomenclature for designating mutations. Hum. Mutat. 2, 245–248 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Terlizzi, V. et al. Prediction of acute pancreatitis risk based on PIP score in children with cystic fibrosis. J. Cyst. Fibros. 13, 579–584 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Dupuis, A. et al. Prevalence of meconium ileus (MIP) marks the severity of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. http://dx.doi.org/10.1038/gim.2015.79 (2015).

  18. Sheppard, D. N. & Welsh, M. J. Structure and function of the cystic fibrosis transmembrane conductance regulator chloride channel. Physiol. Rev. 79 (Suppl. 1), S23–S45 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Quinton, P. M. Chloride impermeability in cystic fibrosis. Nature 301, 421–422 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Stutts, M. J. et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Stutts, M. J. CFTR as a cAMP-regulator of Na+ channels. Science 269, 847–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Gelfond, D. et al. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig. Dis. Sci. 58, 2275–2281 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Garcia, M. A., Yang, N. & Quinton, P. M. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J. Clin. Invest. 119, 2613–2622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bombieri, C. et al. Recommendations for the classification of diseases as CFTR-related disorders. J. Cyst. Fibros. 10 (Suppl. 2), S86–S102 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed, N. et al. Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas. Gut 52, 1159–1164 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kristidis, P. et al. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am. J. Hum. Genet. 50, 1178–1184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Durno, C. et al. Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology 123, 1857–1864 (2002).

    Article  PubMed  Google Scholar 

  28. Augarten, A. et al. The changing face of the exocrine pancreas in cystic fibrosis: the correlation between pancreatic status, pancreatitis and cystic fibrosis genotype. Eur. J. Gastroenterol. Hepatol. 20, 164–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gaskin, K. et al. Improved respiratory prognosis in CF patients with normal fat absorption. J. Pediatr. 100, 857–862 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Wilschanski, M. & Durie, P. R. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 56, 1153–1163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewindon, P. J. et al. The role of hepatic stellate cells and transforming growth factor-ß1 in cystic fibrosis liver disease. Am. J. Pathol. 160, 1705–1715 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Linblad, A., Hultcrantz, R. & Strandvik, B. Bile-duct destruction and collagen deposition: a prominent ultrastructural feature of the liver in cystic fibrosis. Hepatology 16, 372–381 (1992).

    Article  Google Scholar 

  33. Flass, T. et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS ONE 10, e0116967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartlett, J. R. et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA 302, 1076–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewindon, P. J. et al. Importance of hepatic fibrosis in cystic fibrosis and the predictive value of liver biopsy. Hepatology 53, 193–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Witters, P. et al. Noncirrhotic presinusoidal portal hypertension is common in cystic fibrosis-associated liver disease. Hepatology 53, 1064–1065 (2011).

    Article  PubMed  Google Scholar 

  37. Lindblad, A., Glaumann, H. & Strandvik, B. Natural history of liver disease in cystic fibrosis. Hepatology 30, 1151–1158 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ooi, C. Y., Nightingale, S., Durie, P. & Freedman, S. D. Ursodeoxycholic acid in cystic fibrosis-associated liver disease. J. Cyst. Fibros. 11, 72–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, W. et al. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis. BMC Gastroenterol. 12, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, Z. H. et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology 53, 726–736 (2011).

    Article  PubMed  Google Scholar 

  41. Leung, D. H. et al. Aspartate aminotransferase to platelet ratio and fibrosis-4 as biomarkers in biopsy validated pediatric cystic fibrosis liver disease. Hepatology 62, 1576–1583 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Rath, T. et al. TIMP-1/-2 and transient elastography allow non invasive diagnosis of cystic fibrosis associated liver disease. Dig. Liver Dis. 44, 780–787 (2012).

    Article  PubMed  Google Scholar 

  43. Debray, D., Kelly, D., Houwen, R., Strandvik, B. & Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J. Cyst. Fibros. 10 (Suppl. 2), S29–S36 (2011).

    Article  PubMed  Google Scholar 

  44. O'Brien, S. M. et al. Serum bile acids and ursodeoxycholic acid treatment in cystic fibrosis-related liver disease. Eur. J. Gastroenterol. Hepatol. 8, 477–483 (1996).

    CAS  PubMed  Google Scholar 

  45. van de Meeberg, P. C. et al. Low-dose versus high-dose ursodeoxycholic acid in cystic fibrosis-related cholestatic liver disease. Results of a randomized study with 1-year follow-up. Scand. J. Gastroenterol. 32, 369–373 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Colombo, C. et al. Scintigraphic documentation of an improvement in hepatobiliary excretory function after treatment with ursodeoxycholic acid in patients with cystic fibrosis and associated liver disease. Hepatology 15, 677–684 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Lindor, K. D. et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50, 808–814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pozler, O. et al. Transjugular introhepatic portosystemic shunt in five children with cystic fibrosis: long-term results. Hepatogastroenterology 50, 1111–1114 (2003).

    PubMed  Google Scholar 

  49. Lillegard, J. B. et al. A single-institution review of portosystemic shunts in children: an ongoing discussion. HPB Surg. 2010, 964597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Linnane, B., Oliver, M. R. & Robinson, P. J. Does splenectomy in cystic fibrosis related liver disease improve lung function and nutritional status? A case series. Arch. Dis. Child. 91, 771–773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aslanidou, E., Fotoulaki, M., Tsitouridis, I. & Nousia-Arvanitakis, S. Partial splenic embolization: successful treatment of hypersplenism, secondary to biliary cirrhosis and portal hypertension in cystic fibrosis. J. Cyst. Fibros. 6, 212–214 (2007).

    Article  PubMed  Google Scholar 

  52. Gooding, I. et al. Variceal hemorrhage and cystic fibrosis: outcomes and implications for liver transplantation. Liver Transpl. 11, 1522–1526 (2005).

    Article  PubMed  Google Scholar 

  53. Mendizabal, M. et al. Liver transplantation in patients with cystic fibrosis: analysis of United Network for Organ Sharing data. Liver Transpl. 17, 243–250 (2011).

    Article  PubMed  Google Scholar 

  54. Bandsma, R. H. et al. Simultaneous liver-pancreas transplantation for cystic fibrosis-related liver disease: a multicenter experience. J. Cyst. Fibros. 13, 471–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Esterly, J. R. & Oppenheimer, E. H. Observations in cystic fibrosis of the pancreas: the gallbladder. Bull. Johns Hopkins Hosp. 110, 247–268 (1962).

    CAS  PubMed  Google Scholar 

  56. Durieu, I. et al. Sclerosing cholangitis in adults with cystic fibrosis: a magnetic resonance cholangiographic prospective study. J. Hepatol. 30, 1052–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Pall, H. et al. Primary sclerosing cholangitis in childhood is associated with abnormalities in cystic fibrosis-mediated chloride channel function. J. Pediatr. 151, 255–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Sheth, S. et al. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum. Genet. 113, 286–292 (2003).

    Article  PubMed  Google Scholar 

  59. Kerem, E. et al. Clinical and genetic comparisons of patients with cystic fibrosis, with or without meconium ileus. J. Pediatr. 114, 767–773 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Efrati, O. et al. Meconium ileus in patients with cystic fibrosis is not a risk factor for clinical deterioration and survival: the Israeli Multicenter Study. J. Pediatr. Gastroenterol. Nutr. 50, 173–178 (2010).

    Article  PubMed  Google Scholar 

  61. Blackman, S. M. et al. Relative contribution of genetic and non-genetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology 131, 1030–1039 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Karimi, A. et al. Issues in the management of simple and complex meconium ileus. Pediatr. Surg. Int. 27, 963–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roberts, H. E. et al. Increased frequency of cystic fibrosis among infants with jejunoileal atresia. Am. J. Med. Genet. 78, 446–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Stollman, T. H., Wijnen, R. M. & Draaisma, J. M. Investigation for cystic fibrosis in infants with jejunoileal atresia in the Netherlands: a 35-year experience with 114 cases. Eur. J. Pediatr. 166, 989–990 (2007).

    Article  PubMed  Google Scholar 

  65. Yap, T. S., Jiwane, A., Belessis, Y. & Ooi, C. Y. Colonic atresia presenting as neonatal bowel obstruction in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 58, e37–e38 (2014).

    Article  PubMed  Google Scholar 

  66. Dray, X. et al. Distal intestinal obstruction syndrome in adults with cystic fibrosis. Clin. Gastroenterol. Hepatol. 2, 498–503 (2004).

    Article  PubMed  Google Scholar 

  67. Morton, J. R. et al. Distal intestinal obstruction syndrome (DIOS) in patients with cystic fibrosis after lung transplantation. J. Gastrointest. Surg. 13, 1448–1453 (2009).

    Article  PubMed  Google Scholar 

  68. Shidrawi, R. et al. Emergency colonoscopy for distal intestinal obstruction syndrome in cystic fibrosis patients. Gut 51, 285–286 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez-Aguilar, F. et al. Digestive alterations in cystic fibrosis: retrospective study of a series of 46 adult patients. Gastroenterol. Hepatol. 22, 72–78 (1999).

    CAS  PubMed  Google Scholar 

  70. Smith, V. V. et al. Lymphocytic leiomyositis and myenteric ganglionitis are intrinsic features of cystic fibrosis: studies in distal intestinal obstruction syndrome and meconium ileus. J. Pediatr. Gastroenterol. Nutr. 49, 42–51 (2009).

    Article  PubMed  Google Scholar 

  71. Houwen, R. H. et al. Defining DIOS and constipation in cystic fibrosis with a multicentre study on the incidence, characteristics, and treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 50, 38–42 (2010).

    Article  PubMed  Google Scholar 

  72. Robertson, M. D., Choe, K. A. & Joseph, P. M. Review of the abdominal manifestations of cystic fibrosis in the adult patient. Radiographics 26, 679–690 (2006).

    Article  PubMed  Google Scholar 

  73. Shields, M. D. et al. Appendicitis in cystic fibrosis. Arch. Dis. Child. 66, 307–310 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lardenoye, S. W., Puylaert, J. B., Smit, M. J. & Holscher, H. C. Appendix in children with cystic fibrosis: US features. Radiology 232, 187–189 (2004).

    Article  PubMed  Google Scholar 

  75. Lee, J. M. et al. Update of faecal markers of inflammation in children with cystic fibrosis. Mediators Inflamm. 2012, 948367 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Ooi, C. Y. et al. Fecal human β-defensin 2 in children with cystic fibrosis: is there a diminished intestinal innate immune response? Dig. Dis. Sci. 60, 2946–2952 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Hoen, A. G. et al. Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis. J. Pediatr. 167, 138–147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schippa, S. et al. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in fecal microbiota of cystic fibrosis patients. PLoS ONE 8, e61176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruzzese, E. et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS ONE 9, e87796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Duytschaever, G. et al. Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl. Environ. Microbiol. 77, 8015–8024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scanlan, P. D. et al. Gut dysbiosis in cystic fibrosis. J. Cyst. Fibros. 11, 454–455 (2012).

    Article  PubMed  Google Scholar 

  82. Madan, J. C. et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio 3, e00251–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Lisle, R. C. Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G104–G111 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Malik, B. A., Xie, Y. Y., Wine, E. & Huynh, H. Q. Diagnosis and pharmacological management of small intestinal bacterial overgrowth in children with intestinal failure. Can. J. Gastroenterol. 25, 41–45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. del Campo, R. et al. Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J. Cyst. Fibros. 13, 716–722 (2014).

    Article  PubMed  Google Scholar 

  86. Wu, T. C., McCarthy, V. P. & Gill, V. J. Isolation rate and toxigenic potential of Clostridium difficile isolates from patients with cystic fibrosis. J. Infect. Dis. 148, 176 (1983).

    Article  CAS  PubMed  Google Scholar 

  87. Rivlin, J. et al. Severe Clostridium difficile-associated colitis in young patients with cystic fibrosis. J. Pediatr. 132, 177–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Roberts, D. M. et al. Prevalence of giardiasis in patients with cystic fibrosis. J. Pediatr. 112, 555–559 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Norkina, O., Burnett, T. G. & De Lisle, R. C. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect. Immun. 72, 6040–6049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smyth, R. L. et al. Intestinal inflammation in cystic fibrosis. Arch. Dis. Child. 82, 394–399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Werlin, S. L. et al. Evidence of intestinal inflammation in patients with cystic fibrosis. J. Pediatr. Gastrtroenterol. Nutr. 51, 304–308 (2010).

    CAS  Google Scholar 

  92. Bruzzese, E., Raia, V. & Gaudiello, G. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 20, 813–819 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Dhaliwal, J. et al. Intestinal inflammation and impact on growth in children with cystic fibrosis. J. Pediatr. Gastrtroenterol. Nutr. 60, 521–526 (2015).

    Article  Google Scholar 

  94. Pang, T. et al. Elevated faecal M2-pyruvate kinase in children with cystic fibrosis: a clue to the increased risk of intestinal malignancy in adulthood? J. Gastroenterol. Hepatol. 30, 866–871 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Lisowska, A. et al. Small intestine bacterial overgrowth does not correspond to intestinal inflammation in cystic fibrosis. Scand. J. Clin. Lab. Invest. 70, 322–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Billings, J. L. et al. Early colon screening of adult patients with cystic fibrosis reveals high incidence of adenomatous colon polyps. J. Clin. Gastroenterol. 48, e85–88 (2014).

    Article  PubMed  Google Scholar 

  97. Gallagher, A. M. & Gottlieb, R. A. Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. Am. J. Physiol. Gastroenterol. 281, G681–G687 (2001).

    Article  CAS  Google Scholar 

  98. Hardt, P. D. et al. Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br. J. Cancer 91, 980–984 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gottlieb, R. A., Dosanjh, A. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc. Natl Acad. Sci. USA 93, 3587–3591 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Mehta, A. Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2. Mol. Cell. Biochem. 316, 169–175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7–G17 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Doumit, M., Krishnan, U., Jaffé, A. & Belessis, Y. Acid and non-acid reflux during physiotherapy in young children with cystic fibrosis. Pediatr. Pulmonol. 47, 119–124 (2012).

    Article  PubMed  Google Scholar 

  103. Pauwels, A. et al. Gastric emptying and different types of reflux in adult patients with cystic fibrosis. Aliment. Pharmacol. Ther. 34, 799–807 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Button, B. M. et al. Gastroesophageal reflux (symptomatic and silent): a potentially significant problem in patients with cystic fibrosis before and after lung transplantation. J. Heart Lung Transplant. 24, 1522–1529 (2005).

    Article  PubMed  Google Scholar 

  105. Smythe, R. L. et al. Strictures of ascending colon in cystic fibrosis and high strength pancreatic enzymes. Lancet 343, 85–86 (1994).

    Article  Google Scholar 

  106. Borowitz, D. S., Grand, R. J. & Durie, P. R. Use of pancreatic enzyme supplements for patients with cystic fibrosis in the context of fibrosing colonopathy. J. Pediatr. 127, 681–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Borowitz, D., Baker, R. D. & Stallings, V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 35, 246–259 (2002).

    Article  PubMed  Google Scholar 

  108. Lloyd-Still, J. D. Crohn's disease and cystic fibrosis. Dig. Dis. Sci. 39, 880–885 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Bresso, F. et al. Potential role for the common cystic fibrosis ΔF508 mutation in Crohn's disease. Inflamm. Bowel Dis. 13, 531–536 (2007).

    Article  PubMed  Google Scholar 

  110. Bahmanyar, S. et al. Cystic fibrosis gene mutations and gastrointestinal diseases. J. Cyst. Fibros. 9, 288–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Bresso, F., D'Amato, M. The cystic fibrosis F508del mutation in Crohn's disease. J. Cyst. Fibros. 10, 132 (2011).

    Article  PubMed  Google Scholar 

  112. Rowe, S. M. et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir. Crit. Care Med. 190, 175–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harrison, M. J., Murphy, D. M. & Plant, B. J. Ivacaftor in a G551D homozygote with cystic fibrosis. N. Engl. J. Med. 369, 1280–1282 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Fallahi, G. et al. The effect of probiotics on fecal calprotectin in patients with cystic fibrosis. Turk. J. Pediatr. 55, 475–478 (2013).

    PubMed  Google Scholar 

  115. Jafari, S. A. et al. Effects of probiotics on quality of life in children with cystic fibrosis; a randomized controlled trial. Iran. J. Pediatr. 23, 669–674 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. Bruzzese, E. et al. Effect of Lactobacillus GG supplementation on pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Clin. Nutr. 26, 322–328 (2007).

    Article  PubMed  Google Scholar 

  117. Weiss, B. et al. Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Pediatr. Pulmonol. 45, 536–540 (2010).

    PubMed  Google Scholar 

  118. Hirtz, S. et al. CFTR Cl channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127, 1085–1095 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Veeze, H. J. et al. Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology 101, 398–403 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Mall, M., Hirtz, S., Gonska, T. & Kunzelmann, K. Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis. J. Cyst. Fibros. 3 (Suppl. 2), 165–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Tøn, H. et al. Improved assay for fecal calprotectin. Clin. Chim. Acta 292, 41–54 (2000).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C.Y.O. acknowledges the grant support received from The Cystic Fibrosis Australia Research Trust Grant and The Royal Australasian College of Physicians Research and Education Foundation Award (Servier Staff Research Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, review and editing of the manuscript and discussion of content. C.Y.O. wrote the manuscript.

Corresponding author

Correspondence to Chee Y. Ooi.

Ethics declarations

Competing interests

C.Y.O. received consultancy fees from Vertex. P.R.D. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, C., Durie, P. Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol 13, 175–185 (2016). https://doi.org/10.1038/nrgastro.2015.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing