Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver regeneration — mechanisms and models to clinical application

Key Points

  • Liver regeneration occurs efficiently in the normal liver to restore architecture, size and function; chronic injury severely impairs liver regeneration through excess inflammation, scarring and epithelial abnormalities, and is less well-studied but clinically important

  • New experimental models are emerging; zebrafish are an excellent new tool to study liver regeneration and enable large-scale chemical screening assays

  • A gap exists between current animal models of liver regeneration and clinically important scenarios of severe liver injury and impaired liver regeneration

  • Understanding and promoting regeneration and repair of the failing liver is a key challenge of major clinical importance

  • Modern imaging techniques will enable noninvasive real-time assessment of liver structure and function

  • Cell therapies that have been successful in animal models are now being trialled in the more challenging clinical arena

Abstract

Liver regeneration has been studied for many decades and the mechanisms underlying regeneration of the normal liver following resection or moderate damage are well described. A large number of factors extrinsic (such as bile acids and circulating growth factors) and intrinsic to the liver interact to initiate and regulate liver regeneration. Less well understood, and more clinically relevant, are the factors at play when the abnormal liver is required to regenerate. Fatty liver disease, chronic scarring, prior chemotherapy and massive liver injury can all inhibit the normal programme of regeneration and can lead to liver failure. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or directly stimulate liver regeneration. Although animal models of liver regeneration have been highly instructive, the clinical relevance of some models could be improved to bridge the gap between our in vivo model systems and the clinical situation. Likewise, modern imaging techniques such as spectroscopy will probably improve our understanding of whole-organ metabolism and how this predicts the liver's regenerative capacity. This Review describes briefly the mechanisms underpinning liver regeneration, the models used to study this process, and discusses areas in which failed or compromised liver regeneration is clinically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Animal models of liver regeneration.
Figure 2: Schematic of normal and abnormal liver regeneration.
Figure 3: Strategies to improve liver regeneration.

Similar content being viewed by others

References

  1. Issa, R. et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J. 17, 47–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bhushan, B. et al. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am. J. Pathol. 184, 3013–3025 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernal, W., Lee, W. M., Wendon, J., Larsen, F. S. & Williams, R. Acute liver failure: a curable disease by 2024? J. Hepatol. 62, S112–S120 (2015).

    Article  PubMed  Google Scholar 

  4. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bird, T. G., Lorenzini, S. & Forbes, S. J. Activation of stem cells in hepatic diseases. Cell Tissue Res. 331, 283–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lauterio, A. et al. Current status and perspectives in split liver transplantation. World J. Gastroenterol. 21, 11003–11015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eshkenazy, R. et al. Small for size liver remnant following resection: prevention and management. Hepatobiliary Surg. Nutr. 3, 303–312 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Ploeg, R. J. et al. Risk factors for primary dysfunction after liver transplantation — a multivariate analysis. Transplantation 55, 807–813 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Asrani, S. K. & Kamath, P. S. Natural history of cirrhosis. Curr. Gastroenterol. Rep. 15, 308 (2013).

    Article  PubMed  Google Scholar 

  10. Forbes, S. J. et al. Retroviral gene transfer to the liver in vivo during tri-iodothyronine induced hyperplasia. Gene Ther. 5, 552–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Higgins, G. M. & Anderson, R. M. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. Lab. Med. 12, 186–202 (1931).

    Google Scholar 

  12. He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800.e8 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Forbes, S. J. & Rosenthal, N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Moolten, F. L. & Bucher, N. L. Regeneration of rat liver: transfer of humoral agent by cross circulation. Science 158, 272–274 (1967).

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura, R. M., Miyada, D. S. & Moyer, D. L. Effect of liver regeneration following partial hepatectomy on the uptake of tritiated thymidine in the pituitary gland of the rat. Nature 199, 707–708 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. Michalopoulos, G. K. Liver regeneration. J. Cell. Physiol. 213, 286–300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martins, P. N., Theruvath, T. P. & Neuhaus, P. Rodent models of partial hepatectomies. Liver Int. 28, 3–11 (2008).

    Article  PubMed  Google Scholar 

  18. Demetris, A. J. et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am. J. Surg. Pathol. 30, 986–993 (2006).

    Article  PubMed  Google Scholar 

  19. Ren, W. et al. Selective bowel decontamination improves the survival of 90% hepatectomy in rats. J. Surg. Res. 195, 454–464 (2015).

    Article  PubMed  Google Scholar 

  20. Capussotti, L. et al. Liver dysfunction and sepsis determine operative mortality after liver resection. Br. J. Surg. 96, 88–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Busani, S. et al. Living donor liver transplantation and management of portal venous pressure. Transplant. Proc. 38, 1074–1075 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Du, Z. et al. Octreotide prevents liver failure through upregulating 5′-methylthioadenosine in extended hepatectomized rats. Liver Int. 36, 212–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Ninomiya, M. et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am. J. Transplant. 10, 1580–1587 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R. & Thorgeirsson, S. S. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab. Invest. 70, 511–516 (1994).

    CAS  PubMed  Google Scholar 

  25. Ghoshal, A. K., Mullen, B., Medline, A. & Farber, E. Sequential analysis of hepatic carcinogenesis. Regeneration of liver after carbon tetrachloride-induced liver necrosis when hepatocyte proliferation is inhibited by 2-acetylaminofluorene. Lab. Invest. 48, 224–230 (1983).

    CAS  PubMed  Google Scholar 

  26. Evarts, R. P., Nagy, P., Marsden, E. & Thorgeirsson, S. S. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Trautwein, C. et al. 2-acetaminofluorene blocks cell cycle progression after hepatectomy by p21 induction and lack of cyclin E expression. Oncogene 18, 6443–6453 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Dusabineza, A. C. et al. Participation of liver progenitor cells in liver regeneration: lack of evidence in the AAF/PH rat model. Lab. Invest. 92, 72–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lemaigre, F. P. Determining the fate of hepatic cells by lineage tracing: facts and pitfalls. Hepatology 61, 2100–2103 (2015).

    Article  PubMed  Google Scholar 

  30. Bockamp, E. et al. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen. Med. 3, 217–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Nikfarjam, M., Malcontenti-Wilson, C., Fanartzis, M., Daruwalla, J. & Christophi, C. A model of partial hepatectomy in mice. J. Invest. Surg. 17, 291–294 (2004).

    Article  PubMed  Google Scholar 

  32. Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kallis, Y. N. et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut 60, 525–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Preisegger, K. H. et al. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab. Invest. 79, 103–109 (1999).

    CAS  PubMed  Google Scholar 

  37. Hsieh, W. C. et al. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut 64, 312–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, M. J., Clouston, A. D. & Forbes, S. J. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 146, 349–356 (2014).

    Article  PubMed  Google Scholar 

  39. Akhurst, B. et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34, 519–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsuchiya, A. et al. Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury. Hepatology 60, 1727–1740 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, K. H., Chen, C. C., Alpini, G. & Lau, L. F. CCN1 induces hepatic ductular reaction through integrin αvβ5-mediated activation of NF-κB. J. Clin. Invest. 125, 1886–1900 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jors, S. et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J. Clin. Invest. 125, 2445–2457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox, A. G. & Goessling, W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr. Opin. Genet. Dev. 32, 153–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curado, S., Stainier, D. Y. & Anderson, R. M. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat. Protoc. 3, 948–954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadler, K. C., Krahn, K. N., Gaur, N. A. & Ukomadu, C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc. Natl Acad. Sci. USA 104, 1570–1575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goessling, W. et al. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev. Biol. 320, 161–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Vliegenthart, A. D., Tucker, C. S., Del Pozo, J. & Dear, J. W. Zebrafish as model organisms for studying drug-induced liver injury. Br. J. Clin. Pharmacol. 78, 1217–1227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, T. Y., Ninov, N., Stainier, D. Y. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Verfaillie, C. M. Biliary cells to the rescue of Prometheus. Gastroenterology 146, 611–614 (2014).

    Article  PubMed  Google Scholar 

  53. Huang, M. et al. Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology 60, 1753–1766 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, F. et al. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish. Biochem. Biophys. Res. Commun. 460, 838–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stueck, A. E. & Wanless, I. R. Hepatocyte buds derived from progenitor cells repopulate regions of parenchymal extinction in human cirrhosis. Hepatology 61, 1696–1707 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, W. R. et al. The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology 51, 1017–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ueda, J., Chijiiwa, K., Nakano, K., Zhao, G. & Tanaka, M. Lack of intestinal bile results in delayed liver regeneration of normal rat liver after hepatectomy accompanied by impaired cyclin E-associated kinase activity. Surgery 131, 564–573 (2002).

    Article  PubMed  Google Scholar 

  61. Huang, W. et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Meng, Z. et al. FXR regulates liver repair after CCl4-induced toxic injury. Mol. Endocrinol. 24, 886–897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Otao, R. et al. External biliary drainage and liver regeneration after major hepatectomy. Br. J. Surg. 99, 1569–1574 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Kele, P. G., de Boer, M., van der Jagt, E. J., Lisman, T. & Porte, R. J. Early hepatic regeneration index and completeness of regeneration at 6 months after partial hepatectomy. Br. J. Surg. 99, 1113–1119 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Black, S. M., Whitson, B. A. & Velayutham, M. EPR spectroscopy as a predictive tool for the assessment of marginal donor livers perfused on a normothermic ex vivo perfusion circuit. Med. Hypotheses 82, 627–630 (2014).

    Article  PubMed  Google Scholar 

  66. Qi, J. et al. 31P MR spectroscopic imaging detects regenerative changes in human liver stimulated by portal vein embolization. J. Magn. Reson. Imaging 34, 336–344 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zakian, K. L. et al. Liver regeneration in humans is characterized by significant changes in cellular phosphorus metabolism: assessment using proton-decoupled 31P-magnetic resonance spectroscopic imaging. Magn. Reson. Med. 54, 264–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kumar, S., Zou, Y., Bao, Q., Wang, M. & Dai, G. Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy. Hepatol. Res. 43, 876–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Afolabi, P., Wright, M., Wootton, S. A. & Jackson, A. A. Clinical utility of 13C-liver-function breath tests for assessment of hepatic function. Dig. Dis. Sci. 58, 33–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Miura, Y., Washizawa, N., Urita, Y., Imai, T. & Kaneko, H. Evaluation of remnant liver function using 13C-breath tests in a rat model of 70% partial hepatectomy. Hepatogastroenterology 59, 311–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, S. G. A complete treatment of adult living donor liver transplantation: a review of surgical technique and current challenges to expand indication of patients. Am. J. Transplant. 15, 17–38 (2015).

    Article  PubMed  Google Scholar 

  72. Apte, U. et al. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol. 175, 1056–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holt, M. P., Cheng, L. & Ju, C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J. Leukoc. Biol. 84, 1410–1421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amemiya, H., Kono, H. & Fujii, H. Liver regeneration is impaired in macrophage colony stimulating factor deficient mice after partial hepatectomy: the role of M-CSF-induced macrophages. J. Surg. Res. 165, 59–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Stutchfield, B. M. et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149, 1896–1909.e14 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Vetelainen, R., van Vliet, A. K. & van Gulik, T. M. Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy. Ann. Surg. 245, 44–50 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Truant, S. et al. Volumetric gain of the liver after major hepatectomy in obese patients: a case-matched study in 84 patients. Ann. Surg. 258, 696–702; discussion 702–704 (2013).

    Article  PubMed  Google Scholar 

  78. Younossi, Z. M. et al. Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology http://dx.doi.org/10.1002/hep.28431 (2015).

  79. Verran, D. et al. Clinical experience gained from the use of 120 steatotic donor livers for orthotopic liver transplantation. Liver Transpl. 9, 500–505 (2003).

    Article  PubMed  Google Scholar 

  80. Chu, M. J., Dare, A. J., Phillips, A. R. & Bartlett, A. S. Donor hepatic steatosis and outcome after liver transplantation: a systematic review. J. Gastrointest. Surg. 19, 1713–1724 (2015).

    Article  PubMed  Google Scholar 

  81. Rogier, J. et al. Noninvasive assessment of macrovesicular liver steatosis in cadaveric donors based on computed tomography liver-to-spleen attenuation ratio. Liver Transpl. 21, 690–695 (2015).

    Article  PubMed  Google Scholar 

  82. Hewitt, K. C. et al. Accurate assessment of liver steatosis in animal models using a high throughput Raman fiber optic probe. Analyst 140, 6602–6609 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Inaba, Y. et al. Growth arrest and DNA damage-inducible 34 regulates liver regeneration in hepatic steatosis in mice. Hepatology 61, 1343–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Shimamura, T. et al. Excessive portal venous inflow as a cause of allograft dysfunction in small-for-size living donor liver transplantation. Transplant. Proc. 33, 1331 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Dahm, F., Georgiev, P. & Clavien, P. A. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am. J. Transplant. 5, 2605–2610 (2005).

    Article  PubMed  Google Scholar 

  86. de Rougemont, O., Lehmann, K. & Clavien, P. A. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl. 15, 1172–1182 (2009).

    Article  PubMed  Google Scholar 

  87. Gracia-Sancho, J., Casillas-Ramirez, A. & Peralta, C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin. Sci. (Lond.) 129, 345–362 (2015).

    Article  CAS  Google Scholar 

  88. Zeng, S. et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39, 422–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Cataldegirmen, G. et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-α and NF-κB. J. Exp. Med. 201, 473–484 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Basta, G., Del Turco, S., Navarra, T., Lee, W. M. & The Acute Liver Failure Study Group. Circulating levels of soluble receptor for advanced glycation end products and ligands of the receptor for advanced glycation end products in patients with acute liver failure. Liver Transpl. 21, 847–854 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Koh, E. J., Yoon, S. J. & Lee, S. M. Losartan protects liver against ischaemia/reperfusion injury through PPAR-γ activation and receptor for advanced glycation end-products down-regulation. Br. J. Pharmacol. 169, 1404–1416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Henderson, N. C. & Forbes, S. J. Hepatic fibrogenesis: from within and outwith. Toxicology 254, 130–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Pellicoro, A. et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 55, 1965–1975 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Marshall, A. et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 128, 33–42 (2005).

    Article  PubMed  Google Scholar 

  95. Bird, T. G. et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl Acad. Sci. USA 110, 6542–6547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. D'Ambrosio, R. et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 56, 532–543 (2012).

    Article  PubMed  Google Scholar 

  98. Mallet, V. et al. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann. Intern. Med. 149, 399–403 (2008).

    Article  PubMed  Google Scholar 

  99. Bruix, J. et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure. Gastroenterology 111, 1018–1022 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Santambrogio, R. et al. Hepatic resection for hepatocellular carcinoma in patients with Child-Pugh's A cirrhosis: is clinical evidence of portal hypertension a contraindication? HPB (Oxford) 15, 78–84 (2013).

    Article  Google Scholar 

  101. Mazzaferro, V. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 334, 693–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Tandon, P. et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 18, 1209–1216 (2012).

    Article  PubMed  Google Scholar 

  103. Weissenborn, K., Ruckert, N., Hecker, H. & Manns, M. P. The number connection tests A and B: interindividual variability and use for the assessment of early hepatic encephalopathy. J. Hepatol. 28, 646–653 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Younossi, Z. M., Guyatt, G., Kiwi, M., Boparai, N. & King, D. Development of a disease specific questionnaire to measure health related quality of life in patients with chronic liver disease. Gut 45, 295–300 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pugh, R. N., Murray-Lyon, I. M., Dawson, J. L., Pietroni, M. C. & Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 60, 646–649 (1973).

    Article  CAS  PubMed  Google Scholar 

  106. Angermayr, B. et al. Child-Pugh versus MELD score in predicting survival in patients undergoing transjugular intrahepatic portosystemic shunt. Gut 52, 879–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schiodt, F. V. et al. Alpha-fetoprotein and prognosis in acute liver failure. Liver Transpl. 12, 1776–1781 (2006).

    Article  PubMed  Google Scholar 

  108. John, K. et al. MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology 60, 1346–1355 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Rutherford, A. et al. Development of an accurate index for predicting outcomes of patients with acute liver failure. Gastroenterology 143, 1237–1243 (2012).

    Article  PubMed  Google Scholar 

  110. Kamath, P. S., Kim, W. R. & The Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology 45, 797–805 (2007).

    Article  PubMed  Google Scholar 

  111. Malinchoc, M. et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31, 864–871 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Merion, R. M. et al. Longitudinal assessment of mortality risk among candidates for liver transplantation. Liver Transpl. 9, 12–18 (2003).

    Article  PubMed  Google Scholar 

  113. Watkins, P. B. et al. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J. Clin. Invest. 83, 688–697 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wahllander, A., Mohr, S. & Paumgartner, G. Assessment of hepatic function. Comparison of caffeine clearance in serum and saliva during the day and at night. J. Hepatol. 10, 129–137 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Keiding, S. Galactose clearance measurements and liver blood flow. Gastroenterology 94, 477–481 (1988).

    Article  CAS  PubMed  Google Scholar 

  116. Everson, G. T. et al. Portal-systemic shunting in patients with fibrosis or cirrhosis due to chronic hepatitis C: the minimal model for measuring cholate clearances and shunt. Aliment. Pharmacol. Ther. 26, 401–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Cassinotto, C. et al. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®. J. Hepatol. 61, 550–557 (2014).

    Article  PubMed  Google Scholar 

  118. Pandharipande, P. V., Krinsky, G. A., Rusinek, H. & Lee, V. S. Perfusion imaging of the liver: current challenges and future goals. Radiology 234, 661–673 (2005).

    Article  PubMed  Google Scholar 

  119. Regini, F. et al. Assessment of liver perfusion by intravoxel incoherent motion (IVIM) magnetic resonance-diffusion-weighted imaging: correlation with phase-contrast portal venous flow measurements. J. Comput. Assist. Tomogr. 39, 365–372 (2015).

    PubMed  Google Scholar 

  120. Shikare, S. V., Bashir, K., Abraham, P. & Tilve, G. H. Hepatic perfusion index in portal hypertension of cirrhotic and non-cirrhotic aetiologies. Nucl. Med. Commun. 17, 520–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Marcellin, P. et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N. Engl. J. Med. 359, 2442–2455 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Pearlman, B. L., Ehleben, C. & Perrys, M. The combination of simeprevir and sofosbuvir is more effective than that of peginterferon, ribavirin, and sofosbuvir for patients with hepatitis C-related child's class A cirrhosis. Gastroenterology 148, 762–770.e2 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Dowman, J. K., Armstrong, M. J., Tomlinson, J. W. & Newsome, P. N. Current therapeutic strategies in non-alcoholic fatty liver disease. Diabetes Obes. Metab. 13, 692–702 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Dyson, J. K. et al. Unmet clinical need in autoimmune liver diseases. J. Hepatol. 62, 208–218 (2015).

    Article  PubMed  Google Scholar 

  125. Eksteen, B., Afford, S. C., Wigmore, S. J., Holt, A. P. & Adams, D. H. Immune-mediated liver injury. Semin. Liver Dis. 27, 351–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Yannaki, E. et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp. Hematol. 33, 108–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Piscaglia, A. C., Shupe, T. D., Oh, S. H., Gasbarrini, A. & Petersen, B. E. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology 133, 619–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Garg, V. et al. Granulocyte colony-stimulating factor mobilizes CD34+ cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142, 505–512.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Fanti, M., Singh, S., Ledda-Columbano, G. M., Columbano, A. & Monga, S. P. Tri-iodothyronine induces hepatocyte proliferation by protein kinase A-dependent β-catenin activation in rodents. Hepatology 59, 2309–2320 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Perra, A. et al. Thyroid hormone (T3) and TRβ agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Perra, A., Kowalik, M. A., Pibiri, M., Ledda-Columbano, G. M. & Columbano, A. Thyroid hormone receptor ligands induce regression of rat preneoplastic liver lesions causing their reversion to a differentiated phenotype. Hepatology 49, 1287–1296 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Malik, R., Habib, M., Tootle, R. & Hodgson, H. Exogenous thyroid hormone induces liver enlargement, whilst maintaining regenerative potential — a study relevant to donor preconditioning. Am. J. Transplant. 5, 1801–1807 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Mu, X. et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J. Clin. Invest. 125, 3891–3903 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schuppan, D. & Kim, Y. O. Evolving therapies for liver fibrosis. J. Clin. Invest. 123, 1887–1901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rambaldi, A. & Gluud, C. Colchicine for alcoholic and non-alcoholic liver fibrosis and cirrhosis. Cochrane Database Syst. Rev. 3, CD002148 (2005).

    Google Scholar 

  136. Nelson, D. R. et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 38, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Pockros, P. J. et al. Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-γ1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology 45, 569–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Colmenero, J. et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G726–G734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration and function. Hepatology 53, 2003–2015 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Sakaida, I. et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40, 1304–1311 (2004).

    Article  PubMed  Google Scholar 

  141. Meier, R. P. et al. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J. Hepatol. 62, 634–641 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Houlihan, D. D. & Newsome, P. N. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 135, 438–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Salama, H. et al. Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases. Cell Transplant. 19, 1475–1486 (2010).

    Article  PubMed  Google Scholar 

  144. Aldridge, V. et al. Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner. Hepatology 56, 1063–1073 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Moore, J. K., Stutchfield, B. M. & Forbes, S. J. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment. Pharmacol. Ther. 39, 673–685 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper presents independent research supported by the Birmingham National Institute for Health Research (NIHR) Liver Biomedical Research Unit based at the University Hospital Birmingham NHS Foundation Trust and the University of Birmingham. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. P.N.N. is supported by the NIHR Biomedical Research Unit.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Stuart J. Forbes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, S., Newsome, P. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 13, 473–485 (2016). https://doi.org/10.1038/nrgastro.2016.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing