Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death and immunity

Apoptosis as an HIV strategy to escape immune attack

Key Points

  • Mechanisms that contribute to CD4+ T-cell lymphopaenia during the chronic phase of HIV-infection are complex. They include increased T-cell turnover and accelerated HIV-driven destruction of infected and bystander uninfected cells, and inappropriate T-cell renewal as a result of HIV interference with thymic differentiation and homeostatic proliferation.

  • HIV-infection activates the two main pathways of cell death in lymphocytes: activation-induced cell death (AICD) through the tumour-necrosis factor (TNF) family of death receptors and activated T-cell autonomous death (ACAD) through BCL-2-related proteins and mitochondrion.

  • The intensity of cell death is correlated with the pathogenicity of the infection and with disease progression and it is closely linked to HIV-driven generalized immune activation.

  • HIV-encoded products (gp120, Nef, Tat, Vpu, Vpr and protease) are involved in the control of cell death in the host, either by triggering the death receptor pathways — upregulation of Fas (CD95)–FasL (CD95L) and TNFR–TNF/TRAIL pathways — or by acting through the mitochondrial pathway — phosphorylation of p53, upregulation of expression of BAX (BCL-2-associated X protein), dissipation of mitochondrial transmembrane potential and cytochrome c release, and activation of caspases.

  • The functional consequence of HIV-driven apoptosis is the impairment of HIV-specific immunity, which results from the apoptosis of virus-specific CD4+ T helper cells, subsequent decreased synthesis of type-1 cytokines and altered differentiation and activity of HIV-specific CD8+ cytotoxic T lymphocytes.

  • Suppression of virus replication by potent anti-retroviral therapy can partly restore CD4+ T-cell numbers and functions. Quantitative restoration involves several phases, including decreased HIV-driven lymphocyte apoptosis, homeostatic proliferation and reconstitution of the naive T-cell pool by increased thymic output. Qualitative restoration is incomplete and new strategies, such as immune-based therapy, are presently under investigation to boost HIV-specific immunity.

Abstract

Viruses have evolved numerous mechanisms to evade the host immune system and one of the strategies developed by HIV is to activate apoptotic programmes that destroy immune effectors. Not only does the HIV genome encode pro-apoptotic proteins, which kill both infected and uninfected lymphocytes through either members of the tumour-necrosis factor family or the mitochondrial pathway, but it also creates a state of chronic immune activation that is responsible for the exacerbation of physiological mechanisms of clonal deletion. This review discusses the molecular mechanisms by which HIV manipulates the apoptotic machinery to its advantage, assesses the functional consequences of this process and evaluates how new therapeutics might counteract this strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-cell homeostasis in HIV infection.
Figure 2: Apoptotic pathways triggered by HIV in infected cells.
Figure 3: Relationship between virus-mediated immune activation, T-cell apoptosis and disease progression before and after anti-retroviral therapy.
Figure 4: Functional consequences of inappropriate T-cell apoptosis.

Similar content being viewed by others

References

  1. Levy, J. A. HIV and the Pathogenesis of AIDS (American Society for Microbiology, Washington DC, 1998).

    Google Scholar 

  2. McCune, J. M. The dynamics of CD4+ T cell depletion in HIV disease. Nature 410, 974–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Grossman, Z. et al. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nature Med. 8, 319–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Mosier, D. E. Virus and target cell evolution in human immunodeficiency virus type 1 infection. Immunol. Res. 21, 253–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Clark, D. R. et al. T-cell progenitor function during progressive human immunodeficiency virus-1 infection and after antiretroviral therapy. Blood 96, 242–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Spits, H. Development of αβ T cells in the human thymus. Nature Rev. Immunol. 2, 760–772 (2002).

    Article  CAS  Google Scholar 

  7. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1999). This paper is the first to report that T-cell receptor-excision circles (TRECs) are present in recent thymic emigrants in humans. Using TREC analysis, the authors show that the thymus of aged individuals is still able to produce new T cells and suggest that HIV might impair new T-cell production.

    Article  CAS  Google Scholar 

  8. Hatzakis, A. et al. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 355, 599–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Med. 6, 1036–1042 (2000). References 8 and 9 are representative of widely opposing views on the interpretation of TREC analysis of T cells from HIV-1-infected individuals and what these analyses tell us about thymic function in HIV-1 infection.

    Article  CAS  PubMed  Google Scholar 

  10. Douek, D. C. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Lempicki, R. A. et al. Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T cell turnover in HIV-infected patients. Proc. Natl Acad. Sci. USA 97, 13778–13783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohri, H. et al. Increased turn over of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1 infected humans. Nature Med. 5, 83–89 (1999). The first direct in vivo measurement of circulating CD4+ and CD8+ T-cell kinetics in healthy and HIV-positive individuals using a non-radioactive, endogenous labelling technique with H 2 -glucose.

    Article  CAS  PubMed  Google Scholar 

  14. Cicala, C. et al. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc. Natl Acad. Sci. USA 99, 9380–9385 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gougeon, M. -L. et al. Evidence for an engagement process towards apoptosis in lymphocytes of HIV infected patients. C. R. Acad. Sci. 312, 529–537 (1991).

    CAS  Google Scholar 

  16. Ameisen, J. C. & Capron, A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol. Today 12, 102–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Gougeon, M. -L. & Montagnier, L. Apoptosis in AIDS. Science 260, 1269–1270 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Meyaard, L. et al. Programmed death of T cells in HIV-1 infection. Science 257, 217–219 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Groux, H. et al. Activation-induced death by apoptosis in lymphocytes from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 175, 331–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Gougeon, M. -L. et al. Programmed cell death of T lymphocytes in AIDS related HIV and SIV infections. AIDS Res. Hum. Retroviruses 9, 553–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Finkel, T. H. et al. Apoptosis occurs predominantly in bystander cells and not in productive cells of HIV- and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995). This paper showed that in the lymph nodes of HIV- or SIV-infected individuals, apoptosis occurs mainly in the uninfected cells rather than in the HIV-infected cells.

    Article  CAS  PubMed  Google Scholar 

  22. Muro-Cacho, C. A., Pantaleo, G. & Fauci, A. Analysis of apoptosis in lymph nodes of HIV-infected persons: intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with the stage of disease or viral burden. J. Immunol. 154, 5555–5566 (1995).

    CAS  PubMed  Google Scholar 

  23. Amendola, A. et al. Induction of tissue transglutaminase in HIV pathogenesis: evidence for a high rate of apoptosis of CD4 T lymphocytes and accessory cells in lymphoid tissues. Proc. Natl Acad. Sci. USA 93, 11057–11062 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lifson, J. D., Reyes, G. R., McGrath, M. S., Stein, B. S. & Engleman, E. G. AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232, 1123–1127 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Terai, C., Kornbluth, R. S., Pauza, C. D., Richman, D. D. & Carson, D. A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J. Clin. Invest. 87, 1710–1715 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gougeon, M. -L., Laurent-Crawford, A. G., Hovanessian, A. G. & Montagnier, L. Direct and indirect mechanisms mediating apoptosis during HIV infection: contribution to in vivo CD4 T cell depletion. Semin. Immunol. 5, 187–194 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Ribeiro, R. M., Mohri, H., Ho, D. D. & Perelson, A. S. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc. Natl Acad. Sci. USA 99, 15572–15577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gougeon, M. -L. & Montagnier, L. Programmed cell death as a mechanism of CD4 and CD8 T cell deletion in AIDS: molecular control and effect of highly active antiretroviral therapy. Ann. NY Acad. Sci. 887, 199–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Selliah, N. & Finkel, T. H. Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ. 8, 127–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Khaled, A. R. & Durum, S. K. Lymphocide: cytokines and the control of lymphoid homeostasis. Nature Rev. Immunol. 2, 817–830 (2002).

    Article  CAS  Google Scholar 

  31. Hildeman, D. A., Zhu, Y., Mitchell, T. C., Kappler, J. & Marrack, P. Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol. 14, 354–359 (2000).

    Article  Google Scholar 

  32. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Martinou, J. -C. & Green, D. R. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol. 2, 63–67 (2001).

    Article  CAS  Google Scholar 

  34. Sodroski, J. G., Goh, W. C., Rosen, A., Campbell, K. & Haseltine, W. A. Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322, 470–474 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Ferri, K. F. et al. Apoptosis control in syncytia induced by the HIV-1 envelope glycoprotein complex: role of mitochondria and caspases. J. Exp. Med. 192, 1081–1092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blaak, H. et al. In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proc. Natl Acad. Sci. USA 97, 1269–1274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Atemad-Moghadam, B. et al. Envelope glycoprotein determinants of increased fusiogenicity in a pathogenic simian-immunodeficiency virus (SHIV-KB9) passaged in vivo. J. Virol. 74, 4433–4440 (2000).

    Article  Google Scholar 

  38. Ohnimus, H. & Jassoy, C. Apoptotic cell death upon contact of CD4 T lymphocytes with HIV glycoprotein expressing cells is mediated by caspases but bypasses CD95 (Fas/Apo-1) and TNF receptor-1. J. Immunol. 159, 5246–5252 (1997).

    CAS  PubMed  Google Scholar 

  39. Casella, C. R., Rapaport, E. L. & Finkel, T. H. Vpu increases susceptibility of human immunodeficiency virus type-1-infected cells to Fas killing. J. Virol. 73, 92–100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castedo, M. et al. Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J. 21, 4070–4080 (2002). This interesting paper looks at the molecular pathway that is triggered by HIV envelope in the apoptosis of syncytia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lenardo, M. J. et al. Cytopathic killing of peripheral blood CD4+ T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J. Virol. 76, 5082–5093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sastry, K. J. et al. Expression of human immunodeficiency virus type 1 Tat results in down-regulation of Bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 13, 487–493 (1996).

    CAS  PubMed  Google Scholar 

  44. Bartz, S. R. & Emerman, M. Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J. Virol. 73, 1956–1963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hashimoto, F., Oyaizu, N., Kalyanaraman, V. S. & Pahwa, S. Modulation of Bcl-2 protein by CD4 cross-linking: a possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by IL-2. Blood 90, 745–753 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Kirsch, D. G. et al. Caspase-3 dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Strack, P. R. et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc. Natl Acad. Sci. USA 93, 9571–9576 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Banda, N. K. et al. Cross-linking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J. Exp. Med. 176, 1099–1106 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Zauli, G. et al. Human immunodeficiency virus type 1 Nef protein sensitizes CD4+ T lymphoid cells to apoptosis via functional up-regulation of the CD95/CD95 ligand pathway. Blood 93, 1000–1010 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Westendorp, M. O. et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Li, C. J., Friedman, D. J., Wang, C., Metelev, V. & Pardee, A. B. Induction of apoptosis in uninfected lymphocytes by HIV Tat protein. Science 268, 429–431 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Herbein, G. et al. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395, 189–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Oyaizu, N. et al. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood 82, 3392–3400 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Gougeon, M. -L. et al. Programmed cell death in peripheral lymphocytes from HIV-infected persons: the increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J. Immunol. 156, 3509–3520 (1996).

    CAS  PubMed  Google Scholar 

  55. Boudet, F., Lecoeur, H. & Gougeon, M. -L. Apoptosis associated with ex vivo down-regulation of Bcl-2 and up-regulation of Fas in potential cytotoxic CD8+ T lymphocytes during HIV infection. J. Immunol. 156, 2282–2293 (1996).

    CAS  PubMed  Google Scholar 

  56. Adachi, Y., Oyaizu, N., Than, S., McCloskey, T. W. & Pahwa, S. IL-2 rescues in vitro lymphocyte apoptosis in patients with HIV infection: correlation with its ability to block culture-induced down-modulation of Bcl-2. J. Immunol. 157, 4184–4193 (1996).

    CAS  PubMed  Google Scholar 

  57. Gougeon, M. -L. et al. Lack of chonic immune activation in HIV-infected chimpanzees correlates with the resistance of T cells to Fas/Apo-1 (CD95)-induced apoptosis and preservation of a T helper 1 phenotype. J. Immunol. 158, 2964–2976 (1997).

    CAS  PubMed  Google Scholar 

  58. Naora, H. & Gougeon, M. -L. Interleukin-15 is a potent survival factor in the prevention of spontaneous but not CD95-induced apoptosis in CD4 and CD8 T lymphocytes of HIV-infected individuals. Correlation with its ability to increase Bcl-2 expression. Cell Death Differ. 6, 1002–1011 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Ju, S. T. et al. Fas (CD95)–FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Katsikis, P. D. et al. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J. Exp. Med. 181, 2029–2037 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Sloand, E. M. et al. Role of Fas ligand and receptor in the mechanism of T-cell depletion in AIDS: effect on CD4+ lymphocyte depletion and HIV replication. Blood 89, 1357–1363 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Estaquier, J. et al. Fas-mediated apoptosis of CD4+ and CD8+ T cells from human immunodeficiency virus-infected persons: differential in vitro preventive effect of cytokines and protease antagonists. Blood 87, 4959–4966 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Medrano, F. J. et al. TNF-β and soluble APO1/Fas independently predict progression to AIDS in HIV-seropositive patients. AIDS Res. Hum. Retroviruses 14, 835–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Badley, A. et al. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J. Virol. 70, 199–206 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silvetris, F., Camarda, G., Cafforio, P. & Dammacco, F. Upregulation of Fas ligand secretion in non lymphopenic stages of HIV-1 infection. AIDS 12, 1103–1118 (1998).

    Google Scholar 

  66. Dockrell, D. H. et al. The expression of Fas ligand by macrophages and its upregulation by HIV infection. J. Clin. Invest. 101, 2394–2405 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Badley, A. D. et al. Dynamic correlation of apoptosis and immune activation during treatment of HIV infection. Cell Death Differ. 6, 420–432 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Szondy, Z., Lecoeur, H., Fesus, L. & Gougeon, M. -L. All-trans retinoic inhibition of anti-CD3-induced T cell apoptosis in human immunodeficiency virus infection mostly concerns CD4 T lymphocytes and is mediated via regulation of CD95 ligand expression. J. Infect. Dis. 178, 1288–1298 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, Y., Bailey, J., Vacchio, M. S., Yarchoan, R. & Ashwell, J. D. Retinoic acid inhibition of ex-vivo human immunodeficiency virus type-1-associated apoptosis of peripheral blood. Proc. Natl Acad. Sci. USA 92, 3051–3055 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Oliveira Pinto, L., Garcia, S., Lecoeur, H., Rapp, C. & Gougeon, M. -L. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood 99, 1666–1675 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Cicala, C. et al. HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4+ T cells. Proc. Natl Acad. Sci. USA 97, 1178–1185 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rasola, A., Gramaglia, D., Boccaccio, C. & Comoglio, P. M. Apoptosis enhancement by the HIV-1 Nef protein. J. Immunol. 166, 81–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Stewart, S. A., Poon, B., Song, J. Y. & Chen, I. S. Human immunodeficiency virus type-1 Vpr induces apoptosis through caspase activation. J. Virol. 74, 3105–3111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Katsikis, P. D. et al. Interleukin-1β converting enzyme-like protease involvement in Fas-induced and activation-induced peripheral blood T cell apoptosis in HIV infection. TNF-related apoptosis inducing ligand can mediate activation-induced T cell death in HIV infection. J. Exp. Med. 186, 1365–1372 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sloand, E. M. et al. The role of interleukin-converting enzyme in Fas-mediated apoptosis in HIV-1 infection. J. Clin. Invest. 101, 195–203 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liegler, T. J. et al. Diminished spontaneous apoptosis in lymphocytes from human immunodeficiency virus infected long-term non progressors. J. Infect. Dis. 178, 669–674 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Zangerle, R. et al. Tumor necrosis factor α and soluble tumor necrosis factor receptors in individuals with immunodeficiency virus infection. Immunol. Lett. 41, 229–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Jeremias, I., Herr, I., Boehler, T. & Debatin, K. -M. TRAIL/Apo-2 ligand-induced apoptosis in human T cells. Eur. J. Immunol. 28, 143–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Miura, Y. et al. Critical contribution of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1 infected hu-PBL-NOD-SCID mice. J. Exp. Med. 193, 651–660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lum, J. J. et al. Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2L. J. Virol. 75, 11128–11136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, M. et al. Identification of a potential HIV-induced source of bystander-mediated apoptosis in T cells: upregulation of TRAIL in primary human macrophages by HIV-1 tat. J. Biomed. Sci. 8, 290–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Piazza, C. et al. CD4+ T cells kill CD8+ T cells via Fas/Fas ligand-mediated apoptosis. J. Immunol. 158, 1503–1511 (1997).

    CAS  PubMed  Google Scholar 

  83. Badley, A. D. et al. Macrophage dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J. Exp. Med. 185, 55–64 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Herbein, G., Van Lint, C., Lovett, J. L. & Verdin, E. Distinct mechanisms trigger apoptosis in human immunodeficiency virus type-1 infected and uninfected bystander T lymphocytes. J. Virol. 72, 660–670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Garcia, S. et al. Potential deleterious effect of anti-viral cytotoxic lymphocytes through the CD95 (Fas/APO-1)-mediated pathway during chronic HIV infection. Immunol. Lett. 57, 53–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Michel, P. et al. Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with β2 microglobulin concentration and disease evolution. J. Infect. Dis. 181, 67–75 (2000).

    Article  Google Scholar 

  87. Sousa, A. E. et al. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 169, 3400–3406 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Estaquier, J. T. et al. Programmed cell death and AIDS: significance of T cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc. Natl Acad. Sci. USA 91, 9431–9440 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Davis, I. C., Girard, M. & Fultz, P. Loss of CD4+ T cells in HIV-1 infected chimpanzees is associated with increased lymphocyte apoptosis. J. Virol. 72, 4623–4632 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tesselaar, K. et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27–CD70 interactions. Nature Immunol. 4, 49–54 (2003). This paper reports that chronic immune activation in mice that constitutively express CD70 leads to the depletion of naive T cells from lymphoid organs and death from opportunistic infection, as occurs during chronic HIV infection.

    Article  CAS  Google Scholar 

  91. Benedict, C. A., Norris, P. S. & Ware, C. F. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3, 1013–1018 (2002). An interesting review on the strategies used by viruses to modulate apoptotic pathways to their advantage.

    Article  CAS  Google Scholar 

  92. Salghetti, S., Mariani, R. & Skowronski, J. Human immunodeficiency virus type 1 Nef and p56 lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc. Natl Acad. Sci. USA 92, 349–353 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crise, B., Buonocore, L. & Rose, J. K. CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J. Virol. 64, 5585–5593 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Willey, R. L., Maldarelli, F., Martin, M. A. & Strebel, K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J. Virol. 66, 7193–7200 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. Endocytosis of major histocompatibility class I molecules is induced by the HIV-1 Nef protein. Nature Med. 2, 338–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Conti, L. et al. The HIV-1 Vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: possible implications for the pathogenesis of AIDS. J. Exp. Med. 187, 403–413 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, C. J., Wang, C., Friedman, D. J. & Pardee, A. B. Reciprocal modulation between p53 and Tat of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 92, 5461–5464 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–947 (2002).

    Article  CAS  Google Scholar 

  100. Noris, P. J. & Rosenberg, E. S. CD4+ T helper cells and the role they play in viral control. J. Mol. Med. 80, 397–405 (2002).

    Article  Google Scholar 

  101. Rosenberg, E. S. et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1451 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Rosenberg, E. S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407, 523–526 (2000). This is the first evidence that it is possible to tip the balance in favour of the immune system for the control of HIV replication.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, J. J. Y. et al. CD4 lymphocytes in the blood of HIV+ individuals migrate rapidly to lymph nodes and bone marrow: support for homing theory of CD4 depletion. J. Leukoc. Biol. 72, 271–278 (2002).

    CAS  PubMed  Google Scholar 

  104. Wang, L., Chen, J. J. Y., Gelman, B. B., Konig, R. & Cloyd, M. W. A novel mechanism of CD4 lymphocyte depletion involves effects of HIV on resting lymphocytes: induction of lymph node homing and apoptosis upon secondary signaling through homing receptors. J. Immunol. 162, 268–276 (1999).

    CAS  PubMed  Google Scholar 

  105. Patterson, S., Rae, A., Hockey, N., Gilmour, J. & Gotch, F. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J. Virol. 75, 6710–6713 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. McNeil, A. C. et al. High level HIV-1 viremia suppresses viral antigen-specific CD4+ T cell proliferation. Proc. Natl Acad. Sci. USA 98, 13878–13883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuwana, M., Kaburaki, J., Wright, T. M., Kawakami, Y. & Ikeda, Y. Induction of antigen-specific human CD4+ T cell anergy by peripheral blood DC2 precursors. Eur. J. Immunol. 31, 2547–2557 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sachs, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Clerici, M. & Shearer, G. M. The TH1/TH2 hypothesis of HIV infection: new insights. Immunol. Today 15, 575–580 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Ledru, E., Lecoeur, H., Garcia, S., Debord, T. & Gougeon, M. -L. Differential susceptibility to activation-induced apoptosis among peripheral TH1 subsets: correlation with Bcl-2 expression and consequences for AIDS pathogenesis. J. Immunol. 160, 3194–3206 (1998).

    CAS  PubMed  Google Scholar 

  112. Gougeon, M. -L. et al. Immunological and virological effects of long-term IL-2 therapy in HIB-1 infected patients. AIDS 15, 1729–1731 (1999).

    Article  Google Scholar 

  113. Plata, F. et al. AIDS virus specific cytotoxic T lymphocytes in lung disorders. Nature 328, 348–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Ogg, G. S. et al. Quantitation of HIV-specific cytotoxic T lymphocytes and plasma viral RNA load. Science 279, 2103–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science, 238, 857–860 (1999).

    Article  Google Scholar 

  116. McMichael, A. J. & Rowland-Jones, S. Cellular immune responses to HIV. Nature 410, 980–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nature Immunol. 3, 1061–1068 (2002).

    Article  CAS  Google Scholar 

  118. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002). This study shows that distinct memory T-cell populations are established during the chronic phase of persistent virus infections (HIV, Epstein–Barr virus and Hepatitis-C virus) according to their phenotype. These data challenge the current definitions of memory and effector subsets in humans.

    Article  CAS  PubMed  Google Scholar 

  119. Mueller, Y. M. et al. Increased CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Immunity 15, 871–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Bofill, M. et al. Presence of CD3+CD8+Bcl-2low lymphocytes undergoing apoptosis and activated macrophages in lymph nodes of HIV-1+ patients. Am. J. Pathol. 146, 1542–1550 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Alexander-Miller, M. A., Derby, M. A., Sarin, A., Henkart, P. A. & Berzofsky, J. A. Supraoptimal peptide–major histocompatibility complex causes a decrease in Bcl-2 levels and allows tumor necrosis factor α receptor 2-mediated apoptosis of cytotoxic T lymphocytes. J. Exp. Med. 188, 1391–1401 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Garba, M. L. et al. HIV antigens can induce TGFβ1-producing immunoregulatory CD8+ T cells. J. Immunol. 168, 2247–2254 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Napolitano, L. A. et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nature Medicine. 7, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Okamoto, Y., Douek, D. C., McFarland, R. D. & Koup, R. A. Effects of exogenous interleukin-7 on human thymus function. Blood 99, 2851–2858 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Hernandez-Lopez, C. et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood 99, 546–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Steffens, C. M., Managlia, E. Z., Landay, A. & Al-Harthi, L. Interleukin-7-treated naive T cells can be productively infected by T-cell-adapted and primary isolates of human immunodeficiency virus 1. Blood 99, 3310–3318 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Naora, H. & Gougeon M. -L. Enhanced survival and potent expansion of the natural killer cell population of HIV-infected individuals by exogenous IL-15. Immunol. Lett. 68, 359–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Naora, H. & Gougeon, M. -L. Activation, survival and apoptosis of CD45R0+ and CD45R0 T cells of HIV-infected individuals: effects of IL-15 and comparison with IL-2. Immunology 97, 181–187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bulfone-Paus, S. et al. Interleukin-15 protects from lethal apoptosis in vivo. Nature Med. 3, 1124–1130 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Gougeon, M. -L., Lecoeur, H. & Sasaki, Y. The CD95 system in HIV infection. Impact of HAART. Immunol. Lett. 66, 97–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Ledru, E., Christeff, N., Patey, O., Melchior, J. -C. & Gougeon, M. -L. Alteration of TNF-α T cell homeostasis following potent antiretroviral therapy. Contribution to the development of HIV-associated lipodystrophy syndrome. Blood 95, 3191–3198 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Sloand, E. M. et al. HIV-1 protease inhibitor modulates activation of peripheral blood CD4+ T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood 94, 1021–1030 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. de Oliveira Pinto, L. -M. et al. Lack of control of T cell apoptosis under HAART. Influence of therapy regimen in vivo and in vitro. AIDS 16, 329–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Fackler, O. T. & Baur, A. Live and let die: Nef functions beyond HIV replication. Immunity 16, 493–497 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Havlir, D. V. Structured intermittent treatment for HIV disease: necessary concession or premature compromise? Proc. Natl Acad. Sci. USA 99, 4–6 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lu, W. et al. Therapeutic dendritic cell vaccine for simian AIDS. Nature Med. 9, 27–32 (2003). This is the first paper showing the ability of a dendritic-cell vaccine to boost immune control of SIV replication and restore CD4+ T-cell counts in a monkey model. This is a promising therapeutic vaccine.

    Article  CAS  PubMed  Google Scholar 

  137. Carr, A. et al. A syndrome of lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 12, F51–F58 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Bastard, J. P. et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 359, 1026–1031 (2002). This study shows that molecular alterations of adipocyte differentiation that are induced in vitro by HIV protease inhibitors are also found in vivo in lipoatrophic adipose tissue of patients with anti-retroviral therapy-associated lipodystrophy syndrome.

    Article  CAS  PubMed  Google Scholar 

  139. Phenix, B. N. & Badley, A. D. Influence of mitochondrial control of apoptosis on the pathogenesis, complications and treatment of HIV infection. Biochimie 84, 251–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Meng, L. et al. Tumor necrosis factor-α and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ: mechanism of desmoplastic reaction. Cancer Res. 61, 2250–2255 (2001).

    CAS  PubMed  Google Scholar 

  141. Christeff, N., de Truchis, P., Melchior, J. C., Perronne, C. & Gougeon, M. -L. Longitudinal evolution of HIV-1 associated lipodystrophy is correlated to serum cortisol/DHEA ratio and interferon-α. Eur. J. Clin. Invest. 32, 775–784 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Berndt, C., Mopps, B., Angermuller, S., Gierschik, P. & Krammer, P. H. CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4 T cells. Proc. Natl Acad. Sci. USA 95, 12556–12561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sloand, E. M. et al. Protease inhibitors stimulate hematopoiesis and decrease apoptosis and ICE expression in CD34+ cells. Blood 96, 2735–2739 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Pati, S. et al. Anti-tumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99, 3771–3779 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Estaquier, J. et al. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death. J. Virol. 7, 5966–5973 (2002).

    Article  CAS  Google Scholar 

  146. Lu, W. & Andrieu, J. M. HIV protease inhibitors restore impaired T-cell proliferative response in vivo and in vitro: a viral-suppression-independent mechanism. Blood 96, 250–258 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank my past and present colleagues for their contribution to this work and apologize to all colleagues whose work has not been cited in this review due to space restrictions. This work was supported by grants from the Agence Nationale de Recherche sur le SIDA (ANRS), Ensemble contre le SIDA (Sidaction), the CNRS, Centre National de la Recherche Scientifique, Pasteur Institute and the European Union.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

BAX

BCL-2

caspase-8

CD34

CD70

CD95

CD95L

CDK1

FLIP

CXCR4

cyclin B

Env

ICE

IFN-γ

IL-2

IL-4

IL-7

IL-10

IL-12

IL-15

MIP1β

Nef

p53

MTOR

RIP

SDF1

Tat

TGF-β

TNF

TNFR1

TNFR2

TRADD

TRAF2

TRAIL/APO2L

Vpr

Vpu

Glossary

BROMODEOXYURIDINE

(BrdU). A thymidine analogue that is incorporated into DNA during DNA replication. Cells that have incorporated BrdU, and presumably have divided, can be visualized by flow cytometry using antibodies specific for BrdU.

DEUTERATED GLUCOSE

Newly synthesized nucleotide that is generated from deuterium (2H)-labelled glucose can be used to label DNA that is synthesized during the administration period of the labelling molecule. Cells of interest can be purified by fluorescence-activated cell sorting, and the isotopic enrichment of cellular DNA content is assessed by gas chromatography and mass spectrometry. Using a mathematical model to analyse the data, the proliferation rate and half-life of cell populations can be calculated.

SYNCYTIA

Multinucleated giant cells that are formed following the fusion of infected cells expressing HIV-encoded envelope glycoproteins and uninfected cells expressing the CD4 co-receptor. The resulting syncytia subsequently undergo apoptosis.

HU-PBL-NOD-SCID MICE

A humanized mouse model in which human peripheral-blood lymphocytes (PBLs) are transplanted into non-obese diabetic (NOD)-severe combined immunodeficient (SCID) mice. This model can be used to examine in vivo apoptosis after HIV-1 infection.

FRATRICIDE

A form of cell killing in which one of a group of similar cells kills another member or members of the group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gougeon, ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3, 392–404 (2003). https://doi.org/10.1038/nri1087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing