Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lysosomal cysteine proteases regulate antigen presentation

Key Points

  • Lysosomal cysteine proteases regulate antigen presentation by both MHC class II molecules and the MHC class-I-like molecule CD1D.

  • Asparagine endopeptidase initiates invariant-chain (Ii) degradation in bone-marrow-derived antigen-presenting cells (APCs), but this is not the only protease that can mediate this cleavage step.

  • Late-stage degradation of Ii is mediated by cathepsin S in peripheral APCs, and cathepsin L in cortical thymic epithelial cells (TECs).

  • In bone-marrow-derived APCs, some peptide epitopes can be positively or negatively regulated by cathepsin S or asparagine endopeptidase.

  • Cathepsin L influences the peptide–MHC class II repertoire expressed by cortical TECs independently of its role in Ii degradation, implicating it as an important protease for the generation of a large number of MHC class-II-bound peptides.

  • The activity of cathepsin L is specifically inhibited in B cells, dendritic cells and macrophages stimulated by interferon-γ, indicating that cathepsin S must regulate Ii degradation in these peripheral APCs.

  • Cathepsin L is required for the presentation of CD1d ligands by thymocytes, eliciting the development of Vα14+Jα18+ natural killer T cells.

Abstract

Antigen presentation by both classical MHC class II molecules and the non-classical MHC class I-like molecule CD1D requires their entry into the endosomal/lysosomal compartment. Lysosomal cysteine proteases constitute an important subset of the enzymes that are present in this compartment and, here, we discuss the role of these proteases in regulating antigen presentation by both MHC class II and CD1D molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MHC class II antigen-presentation pathway.
Figure 2: Degradation of invariant chain.
Figure 3: The role of cathepsin L in determining the peptide–MHC class II repertoire.
Figure 4: Regulation of lysosomal cysteine protease activity.
Figure 5: Lysosomal cysteine proteases and the CD1d antigen presentation pathway.

Similar content being viewed by others

References

  1. Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 15, 821–850 (1997).

    CAS  PubMed  Google Scholar 

  2. Rock, K. L. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).

    CAS  PubMed  Google Scholar 

  3. Sant, A. J. & Miller, J. MHC class II antigen processing: biology of invariant chain. Curr. Opin. Immunol. 6, 57–63 (1994).

    CAS  PubMed  Google Scholar 

  4. Cresswell, P. Invariant chain structure and MHC class II function. Cell 84, 505–507 (1996).

    CAS  PubMed  Google Scholar 

  5. Ghosh, P., Amaya, M., Mellins, E. & Wiley, D. C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378, 457–462 (1995).

    CAS  PubMed  Google Scholar 

  6. Morkowski, S. et al. T cell recognition of major histocompatibility complex class II complexes with invariant chain processing intermediates. J. Exp. Med. 182, 1403–1413 (1995).

    CAS  PubMed  Google Scholar 

  7. Busch, R., Cloutier, I., Sekaly, R. P. & Hammerling, G. J. Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J. 15, 418–428 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roche, P. A., Teletski, C. L., Stang, E., Bakke, O. & Long, E. O. Cell surface HLA-DR–invariant chain complexes are targeted to endosomes by rapid internalization. Proc. Natl Acad. Sci. USA 90, 8581–8585 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Saudrais, C. et al. Intracellular pathway for the generation of functional MHC class II peptide complexes in immature human dendritic cells. J. Immunol. 160, 2597–2607 (1998).

    CAS  PubMed  Google Scholar 

  10. Brachet, V., Pehau-Arnaudet, G., Desaymard, C., Raposo, G. & Amigorena, S. Early endosomes are required for major histocompatiblity complex class II transport to peptide-loading compartments. Mol. Biol. Cell 10, 2891–2904 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakke, O. & Dobberstein, B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell 63, 707–716 (1990).

    CAS  PubMed  Google Scholar 

  12. Lotteau, V. et al. Intracellular transport of class II MHC molecules directed by invariant chain. Nature 348, 600–605 (1990).

    CAS  PubMed  Google Scholar 

  13. Benaroch, P. et al. How MHC class II molecules reach the endocytic pathway. EMBO J. 14, 37–49 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kleijmeer, M. J., Morkowski, S., Griffith, J. M., Rudensky, A. Y. & Geuze, H. J. Major histocompatibility complex class II compartments in human and mouse B lymphoblasts represent conventional endocytic compartments. J. Cell Biol. 139, 639–649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maric, M. A., Taylor, M. D. & Blum, J. S. Endosomal aspartic proteinases are required for invariant-chain processing. Proc. Natl Acad. Sci. USA 91, 2171–2175 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Riese, R. J. et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4, 357–366 (1996). This paper uses a chemical inhibitor to show, for the first time, that cathepsin S mediates degradation of the invariant chain (Ii) in B cells.

    CAS  PubMed  Google Scholar 

  17. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001).

    CAS  PubMed  Google Scholar 

  18. Haque, M. A. et al. Absence of γ-interferon-inducible lysosomal thiol reductase in melanomas disrupts T cell recognition of select immunodominant epitopes. J. Exp. Med. 195, 1267–1277 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Denzin, L. K. & Cresswell, P. HLA-DM induces CLIP dissociation from MHC class II αβ dimers and facilitates peptide loading. Cell 82, 155–165 (1995).

    CAS  PubMed  Google Scholar 

  20. Sherman, M. A., Weber, D. A. & Jensen, P. E. DM enhances peptide binding to class II MHC by release of invariant chain-derived peptide. Immunity 3, 197–205 (1995).

    CAS  PubMed  Google Scholar 

  21. Wubbolts, R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135, 611–622 (1996).

    CAS  PubMed  Google Scholar 

  22. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    CAS  PubMed  Google Scholar 

  24. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    CAS  PubMed  Google Scholar 

  25. Villadangos, J. A. et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev. 172, 109–120 (1999).

    CAS  PubMed  Google Scholar 

  26. Nakagawa, T. Y. & Rudensky, A. Y. The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation. Immunol. Rev. 172, 121–129 (1999).

    CAS  PubMed  Google Scholar 

  27. Salvesen, G. S. A lysosomal protease enters the death scene. J. Clin. Invest. 107, 21–22 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reinheckel, T., Deussing, J., Roth, W. & Peters, C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem. 382, 735–741 (2001).

    CAS  PubMed  Google Scholar 

  29. Riese, R. J. et al. Regulation of CD1 function and NK1.1+ T cell selection and maturation by cathepsin S. Immunity 15, 909–919 (2001).

    CAS  PubMed  Google Scholar 

  30. Honey, K. et al. Thymocyte expression of cathepsin L is essential for NKT cell development. Nature Immunol. 3, 1069–1074 (2002). The first description of a lysosomal protease that regulates thymocyte CD1d-mediated presentation of the endogenous ligands eliciting the development of Vα14+Jα18+ natural killer T (NKT) cells.

    CAS  Google Scholar 

  31. McGrath, M. E. The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct. 28, 181–204 (1999).

    CAS  PubMed  Google Scholar 

  32. Chen, J. M. et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J. Biol. Chem. 272, 8090–8098 (1997).

    CAS  PubMed  Google Scholar 

  33. Turk, V., Turk, B. & Turk, D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629–4633 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mason, R. W., Bartholomew, L. T. & Hardwick, B. S. The use of benzyloxycarbonyl[125I] iodotyrosylalanyldiazomethane as a probe for active cysteine proteinases in human tissues. Biochem J. 263, 945–949 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    CAS  PubMed  Google Scholar 

  36. Chapman, H. A., Riese, R. J. & Shi, G. P. Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–88 (1997).

    CAS  PubMed  Google Scholar 

  37. Blum, J. S. & Cresswell, P. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc. Natl Acad. Sci. USA 85, 3975–3979 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Deussing, J. et al. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc. Natl Acad. Sci. USA 95, 4516–4521 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Villadangos, J. A., Riese, R. J., Peters, C., Chapman, H. A. & Ploegh, H. L. Degradation of mouse invariant chain: roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J. Exp. Med. 186, 549–560 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Riese, R. J. et al. Cathepsin S activity regulates antigen presentation and immunity. J. Clin. Invest. 101, 2351–2363 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Manoury, B. et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity 18, 489–498 (2003). The identification of asparagine endopeptidase as a lysosomal protease that can initiate the cleavage of Ii.

    CAS  PubMed  Google Scholar 

  42. Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453 (1998). This paper shows, for the first time, that cathepsins are expressed differentially by the antigen-presenting cells of the thymus and that in the absence of cathepsin L, Ii degradation in cortical thymic epithelial cells is impaired and CD4+ T-cell selection is markedly reduced.

    CAS  PubMed  Google Scholar 

  43. Nakagawa, T. Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10, 207–217 (1999).

    CAS  PubMed  Google Scholar 

  44. Shi, G. P. et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10, 197–206 (1999). Together with reference 43, this report uses targeted gene deletion to show that cathepsin S mediates the late stages of Ii degradation in B cells, dendritic cells and macrophages.

    CAS  PubMed  Google Scholar 

  45. Driessen, C. et al. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 147, 775–790 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Honey, K. et al. Cathepsin S regulates the expression of cathepsin L and the turnover of γ-interferon-inducible lysosomal thiol reductase in B lymphocytes. J. Biol. Chem. 276, 22573–22578 (2001).

    CAS  PubMed  Google Scholar 

  47. Benavides, F. et al. The CD4 T cell-deficient mouse mutation nackt (nkt) involves a deletion in the cathepsin L (CtsI) gene. Immunogenetics 53, 233–242 (2001).

    CAS  PubMed  Google Scholar 

  48. Santamaria, I. et al. Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res. 58, 1624–1630 (1998).

    CAS  PubMed  Google Scholar 

  49. Bromme, D., Li, Z., Barnes, M. & Mehler, E. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38, 2377–2385 (1999).

    CAS  PubMed  Google Scholar 

  50. Honey, K., Nakagawa, T., Peters, C. & Rudensky, A. Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J. Exp. Med. 195, 1349–1358 (2002). The first in vivo evidence that cathepsin L has a direct role in generating peptides that bind MHC class II molecules.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez, G. M. & Diment, S. Role of cathepsin D in antigen presentation of ovalbumin. J. Immunol. 149, 2894–2898 (1992).

    CAS  PubMed  Google Scholar 

  52. van Noort, J. M. & Jacobs, M. J. Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur. J. Immunol. 24, 2175–2180 (1994).

    CAS  PubMed  Google Scholar 

  53. Bennett, K. et al. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 22, 1519–1524 (1992).

    CAS  PubMed  Google Scholar 

  54. Finley, E. M. & Kornfeld, S. Subcellular localization and targeting of cathepsin E. J. Biol. Chem. 269, 31259–31266 (1994).

    CAS  PubMed  Google Scholar 

  55. Driessen, C., Lennon-Dumenil, A. M. & Ploegh, H. L. Individual cathepsins degrade immune complexes internalized by antigen-presenting cells via Fcγ receptors. Eur. J. Immunol. 31, 1592–1601 (2001).

    CAS  PubMed  Google Scholar 

  56. Hsieh, C. S., deRoos, P., Honey, K., Beers, C. & Rudensky, A. Y. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J. Immunol. 168, 2618–2625 (2002).

    CAS  PubMed  Google Scholar 

  57. Pluger, E. B. et al. Specific role for cathepsin S in the generation of antigenic peptides in vivo. Eur. J. Immunol. 32, 467–476 (2002).

    CAS  PubMed  Google Scholar 

  58. Manoury, B. et al. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 396, 695–699 (1998). This paper identifies asparagine endopeptidase as a protease involved in the generation of peptide epitopes.

    CAS  PubMed  Google Scholar 

  59. Antoniou, A. N., Blackwood, S. L., Mazzeo, D. & Watts, C. Control of antigen presentation by a single protease cleavage site. Immunity 12, 391–398 (2000).

    CAS  PubMed  Google Scholar 

  60. Manoury, B. et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunol. 3, 169–174 (2002).

    CAS  Google Scholar 

  61. Hewitt, E. W. et al. Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: implications for T cell epitope generation. J. Immunol. 159, 4693–4699 (1997).

    CAS  PubMed  Google Scholar 

  62. Beck, H. et al. Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur. J. Immunol. 31, 3726–3736 (2001).

    CAS  PubMed  Google Scholar 

  63. Shi, G. P. et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med. 191, 1177–1186 (2000). This paper indicates that cathepsin F has a role in the late stages of Ii degradation in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Beers, C., Honey, K., Fink, S., Forbush, K. & Rudensky, A. Differential regulation of cathepsin S and cathepsin L in interferon-γ-treated macrophages. J. Exp. Med. 197, 169–179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liuzzo, J. P., Petanceska, S. S., Moscatelli, D. & Devi, L. A. Inflammatory mediators regulate cathepsin S in macrophages and microglia: a role in attenuating heparan sulfate interactions. Mol. Med. 5, 320–333 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Z. et al. Interferon-γ induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 192, 1587–1600 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Storm van's Gravesande, K. et al. IFN regulatory factor-1 regulates IFN-γ-dependent cathepsin S expression. J. Immunol. 168, 4488–4494 (2002).

    PubMed  Google Scholar 

  68. Mason, R. W., Gal, S. & Gottesman, M. M. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem. J. 248, 449–454 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rowan, A. D., Mason, P., Mach, L. & Mort, J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J. Biol. Chem. 267, 15993–15999 (1992).

    CAS  PubMed  Google Scholar 

  70. Mach, L., Mort, J. S. & Glossl, J. Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J. Biol. Chem. 269, 13030–13035 (1994).

    CAS  PubMed  Google Scholar 

  71. McDonald, J. K. & Emerick, J. M. Purification and characterization of procathepsin L, a self-processing zymogen of guinea pig spermatozoa that acts on a cathepsin D assay substrate. Arch. Biochem. Biophys. 323, 409–422 (1995).

    CAS  PubMed  Google Scholar 

  72. Menard, R. et al. Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J. Biol. Chem. 273, 4478–4484 (1998).

    CAS  PubMed  Google Scholar 

  73. Dahl, S. W. et al. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40, 1671–1678 (2001).

    CAS  PubMed  Google Scholar 

  74. Barrett, A. J. The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomed. Biochim. Acta 45, 1363–1374 (1986).

    CAS  PubMed  Google Scholar 

  75. Henskens, Y. M., Veerman, E. C. & Nieuw Amerongen, A. V. Cystatins in health and disease. Biol. Chem. Hoppe Seyler 377, 71–86 (1996).

    CAS  PubMed  Google Scholar 

  76. Leonardi, A., Turk, B. & Turk, V. Inhibition of bovine cathepsins L and S by stefins and cystatins. Biol. Chem. Hoppe Seyler 377, 319–321 (1996).

    CAS  PubMed  Google Scholar 

  77. Pierre, P. & Mellman, I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145 (1998).

    CAS  PubMed  Google Scholar 

  78. Villadangos, J. A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity 14, 739–749 (2001).

    CAS  PubMed  Google Scholar 

  79. Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol. 32, 3348–3357 (2002).

    CAS  PubMed  Google Scholar 

  80. Ogrinc, T., Dolenc, I., Ritonja, A. & Turk, V. Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett. 336, 555–559 (1993).

    CAS  PubMed  Google Scholar 

  81. Bevec, T., Stoka, V., Pungercic, G., Dolenc, I. & Turk, V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J. Exp. Med. 183, 1331–1338 (1996).

    CAS  PubMed  Google Scholar 

  82. Fineschi, B., Sakaguchi, K., Appella, E. & Miller, J. The proteolytic environment involved in MHC class II-restricted antigen presentation can be modulated by the p41 form of invariant chain. J. Immunol. 157, 3211–3215 (1996).

    CAS  PubMed  Google Scholar 

  83. Guncar, G., Pungercic, G., Klemencic, I., Turk, V. & Turk, D. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 18, 793–803 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shachar, I., Elliott, E. A., Chasnoff, B., Grewal, I. S. & Flavell, R. A. Reconstitution of invariant chain function in transgenic mice in vivo by individual p31 and p41 isoforms. Immunity 3, 373–383 (1995).

    CAS  PubMed  Google Scholar 

  85. Takaesu, N. T., Lower, J. A., Robertson, E. J. & Bikoff, E. K. Major histocompatibility class II peptide occupancy, antigen presentation, and CD4+ T cell function in mice lacking the p41 isoform of invariant chain. Immunity 3, 385–396 (1995).

    CAS  PubMed  Google Scholar 

  86. Lennon-Dumenil, A. M. et al. The p41 isoform of invariant chain is a chaperone for cathepsin L. EMBO J. 20, 4055–4064 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fiebiger, E. et al. Invariant chain controls the activity of extracellular cathepsin L. J. Exp. Med. 196, 1263–1269 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med. 196, 529–540 (2002). A new approach to understanding the regulation of lysosomal cysteine-protease activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003). This paper shows that endosome acidification is a crucial event in regulating lysosomal cysteine protease activity after dendritic-cell activation.

    CAS  PubMed  Google Scholar 

  90. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    CAS  Google Scholar 

  91. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    CAS  Google Scholar 

  92. Moody, D. B. & Porcelli, S. A. Intracellular pathways of CD1 antigen presentation. Nature Rev. Immunol. 3, 11–22 (2003).

    CAS  Google Scholar 

  93. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    CAS  PubMed  Google Scholar 

  94. Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    CAS  PubMed  Google Scholar 

  95. Zeng, Z. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    CAS  PubMed  Google Scholar 

  96. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279, 1541–1544 (1998).

    CAS  PubMed  Google Scholar 

  97. Chiu, Y. H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chiu, Y. H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nature Immunol. 3, 55–60 (2002).

    CAS  Google Scholar 

  99. Roberts, T. J. et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168, 5409–5414 (2002).

    CAS  PubMed  Google Scholar 

  100. Sugita, M. et al. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697–706 (2002).

    CAS  PubMed  Google Scholar 

  101. Briken, V., Jackman, R. M., Dasgupta, S., Hoening, S. & Porcelli, S. A. Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J. 21, 825–834 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kang, S. J. & Cresswell, P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J. 21, 1650–1660 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y. H., Mehr, R. & Bendelac, A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897–908 (2001).

    CAS  PubMed  Google Scholar 

  104. Ziegler, H. K. & Unanue, E. R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc. Natl Acad. Sci. USA 79, 175–178 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shimonkevitz, R., Kappler, J., Marrack, P. & Grey, H. Antigen recognition by H–2-restricted T cells. I. Cell-free antigen processing. J. Exp. Med. 158, 303–316 (1983).

    CAS  PubMed  Google Scholar 

  106. Nowell, J. & Quaranta, V. Chloroquine affects biosynthesis of Ia molecules by inhibiting dissociation of invariant (γ) chains from αβ dimers in B cells. J. Exp. Med. 162, 1371–1376 (1985).

    CAS  PubMed  Google Scholar 

  107. Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J. & Unanue, E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 64, 393–401 (1991).

    CAS  PubMed  Google Scholar 

  108. Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Guicciardi, M. E. et al. Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127–1137 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Saftig, P. et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 14, 3599–3608 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Koike, M. et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J. Neurosci. 20, 6898–6906 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, B. et al. Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J. Biol. Chem. 273, 32000–32008 (1998).

    CAS  PubMed  Google Scholar 

  113. Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA 95, 13453–13458 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gowen, M. et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J. Bone Miner. Res. 14, 1654–1663 (1999).

    CAS  PubMed  Google Scholar 

  115. Benavides, F. et al. Impaired hair follicle morphogenesis and cycling with abnormal epidermal differentiation in nackt mice, a cathepsin L-deficient mutation. Am. J. Pathol. 161, 693–703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stypmann, J. et al. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc. Natl Acad. Sci. USA 99, 6234–6239 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Beers and P. Gough for critical review of the manuscript. A. Y. R. is supported by the Howard Hughes Medical Institute and grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Honey.

Related links

Related links

DATABASES

LocusLink

cathepsin B

cathepsin C

cathepsin D

cathepsin E

cathepsin F

cathepsin L

cathepsin S

cathepsin V

CD1d

CD4

CD8

CIITA

cystatin C

GILT

IFN-γ

Ii

Ly49a

NK1.1

Glossary

SUBSTRATE-ANALOGUE INHIBITORS

Small molecules that mimic the natural enzyme substrate and covalently bind to the cysteine residue present in the active site of the cysteine protease.

CLASS II TRANSACTIVATOR

(CIITA). A non-DNA-binding transcriptional activator that functions as a master control factor for the expression of MHC class II molecules. It is believed that CIITA alone provides the tissue specificity for the expression of MHC class II molecules and the accessory molecules invariant chain and HLA-DM (H–2M in mice).

NATURAL KILLER T CELLS

NKT cells constitute a lymphocyte subset that is defined by co-expression of the NK-cell marker NK1.1 and an αβ T-cell receptor (TCR). As a result of the heterogeneity of this population, this T-cell subset is in the process of being more precisely defined; for example, in the mouse, most of these cells are CD1d restricted and express a semi-invariant TCR (Vα14+Jα18+) and the CD4 co-receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honey, K., Rudensky, A. Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3, 472–482 (2003). https://doi.org/10.1038/nri1110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing