Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapeutic uses of CpG oligodeoxynucleotides

Key Points

  • Single-stranded DNA containing CpG motifs triggers an innate immune response that is characterized by the production of polyreactive immunoglobulin and the production of T helper 1 (TH1)-type and pro-inflammatory cytokines, and chemokines.

  • CpG DNA interacts with Toll-like receptor 9 (TLR9) in the endosomal vesicles of human B cells and plasmacytoid dendritic cells, initiating a signalling cascade that proceeds through myeloid differentiation primary response gene 88 (MYD88) and culminates in the translocation of nuclear factor-κB (NF-κB) from the cytoplasm to the nucleus. The subsequent cytokine response indirectly activates various other cell types, including natural killer cells, T cells and macrophages.

  • Human immune cells are stimulated by three structurally distinct classes of CpG oligodeoxynucleotide (ODN). Different types of immune response are triggered by each class of ODN.

  • The innate immune response that is triggered by CpG ODNs improves host resistance to a wide range of pathogenic bacteria, viruses and parasites.

  • By facilitating the production of TH1-type and pro-inflammatory cytokines, and promoting the functional maturation of professional antigen-presenting cells, CpG ODNs accelerate and boost the generation of antigen-specific immunity when co-administered with vaccines.

  • By promoting TH1-biased immunity, CpG ODNs dampen the development of TH2-cell-mediated allergic responses. Reduced allergen-specific IgE production and improved lung function accompany the administration of CpG ODNs with allergen.

  • CpG DNA has the potential to worsen organ-specific autoimmune disease and cause other pathological changes when administered repeatedly at a high dose. However, the regimens that are required to achieve the therapeutic effects described above have not caused adverse events in normal animals or humans.

  • CpG ODNs have been administered safely to more than 500 individuals. Preclinical and clinical results indicate that these agents will be of therapeutic value in the treatment of allergic disorders and for improving host immunity against infectious pathogens.

Abstract

Synthetic oligodeoxynucleotides (ODNs) that contain immunostimulatory CpG motifs trigger an immunomodulatory cascade that involves B and T cells, natural killer cells and professional antigen-presenting cells. The response to CpG ODNs skews the host's immune milieu in favour of T helper 1 (TH1)-cell responses and pro-inflammatory cytokine production — an effect that underlies their use as immunoprotective agents, vaccine adjuvants and anti-allergens. Preclinical studies provide evidence that CpG ODNs are effective for each of these uses. Ongoing clinical studies indicate that CpG ODN use is safe in humans, and that they modulate the immune response to co-administered allergens and vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential therapeutic uses of CpG oligodeoxynucleotides (ODNs).
Figure 2: CpG-DNA–TLR9-mediated cell signalling.
Figure 3: Mechanism by which CpG ODNs facilitate innate and adaptive immune responses.
Figure 4: Potential safety concerns associated with the use of CpG oligodeoxynucleotides (ODNs).

Similar content being viewed by others

References

  1. Marrack, P. & Kappler, J. Subversion of the immune system by pathogens. Cell 76, 323–332 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. & Janeway, C. A. Innate immunity, impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4–9 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov, R. & Janeway, C. A. Innate immunity, the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1998).

    Article  Google Scholar 

  4. Paul, W. E. (ed.) in Fundamental Immunology 1–20 (Raven Press, New York, 2003).

    Google Scholar 

  5. Underhill, D. M. & Ozinsky, A. Toll-like receptors, key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Vasselon, T. & Detmers, P. A. Toll receptors, a central element in innate immune responses. Infect. Immun. 70, 1033–1041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Razin, A. & Friedman, J. DNA methylation and its possible biological roles. Prog. Nucl. Acid Res. 25, 33–52 (1981).

    Article  CAS  Google Scholar 

  8. Cardon, L. R., Burge, C., Clayton, D. A. & Karlin, S. Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl Acad. Sci. USA 91, 3799–3803 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000). This paper shows that Toll-like receptor 9 (TLR9) mediates CpG recognition in mice.

    Article  CAS  PubMed  Google Scholar 

  10. Takeshita, F. et al. Cutting Edge, role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001). The authors show that TLR9 mediates CpG recognition in humans, and that CpG DNA co-localizes with TLR9 in endosomal vesicles.

    Article  CAS  PubMed  Google Scholar 

  11. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagner, H. Bacterial CpG-DNA activates immune cells to signal 'infectious danger'. Adv. Immunol. 73, 329–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto, S. et al. Antitumor effect of nucleic acid fraction from bacteria. Proc. Jpn. Soc. Immunol. 48, 272–281 (1989).

    Google Scholar 

  14. Yamamoto, S. et al. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148, 4072–4076 (1992).

    CAS  PubMed  Google Scholar 

  15. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–548 (1995). This work was the first to identify unmethylated CpG motifs as crucial mediators of immune activation. Studies showed that B cells responded to CpG motifs by proliferating and secreting immunoglobulin.

    Article  CAS  PubMed  Google Scholar 

  16. Klinman, D. M., Yi, A., Beaucage, S. L., Conover, J. & Krieg, A. M. CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFNγ. Proc. Natl Acad. Sci. USA 93, 2879–2883 (1996). The first work to establish that unmethylated CpG motifs elicited a complex immunomodulatory cascade that included the production of T helper 1 (T H 1)-type and pro-inflammatory cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jahrsdorfer, B. & Weiner, G. J. CpG oligodeoxynucleotides for immune stimulation in cancer immunotherapy. Curr. Opin. Investig. Drugs 4, 686–690 (2003).

    PubMed  Google Scholar 

  18. Carpentier, A. F., Auf, G. & Delattre, J. Y. CpG-oligonucleotides for cancer immunotherapy, review of the literature and potential applications in malignant glioma. Front Biosci. 8, 115–127 (2003).

    Article  Google Scholar 

  19. Ishii, K. J. et al. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J. Exp. Med. 196, 269–274 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi, A. K. et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755–4761 (1998).

    CAS  PubMed  Google Scholar 

  21. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeshita, F., Ishii, K. J., Ueda, A., Ishigatsubo, Y. & Klinman, D. M. Positive and negative regulatory elements contribute to CpG oligonucleotide-mediated regulation of human IL-6 gene expression. Eur. J. Immunol. 30, 108–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, M. et al. Cutting edge, a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Takeshita, F. & Klinman, D. M. CpG ODN-mediated regulation of IL-12 p40 transcription. Eur. J. Immunol. 30, 1967–1976 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeroid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595–600 (2000). This paper describes much of the intracellular signalling cascade that is triggered by the interaction of CpG DNA with TLR9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ishii, K. J. et al. CpG-activated plasmacytoid dendritic cells protect against lethal Listeria monocytogenes infection. J. Immunol. (in the press).

  28. Gursel, M., Verthelyi, D., Gursel, I., Ishii, K. J. & Klinman, D. M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotides. J. Leuk. Biol. 71, 813–820 (2002).

    CAS  Google Scholar 

  29. Hornung, V. et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, S., Zhang, X., Tough, D. F. & Sprent, J. Type I interferon-mediated stimulation of T cells by CpG DNA. J. Exp. Med. 188, 2335–2342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stacey, K. J., Sweet, M. J. & Hume, D. A. Macrophages ingest and are activated by bacterial DNA. J. Immunol. 157, 2116–2120 (1996).

    CAS  PubMed  Google Scholar 

  32. Ballas, Z. D., Rasmussen, W. L. & Krieg, A. M. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840–1847 (1996).

    CAS  PubMed  Google Scholar 

  33. Roman, M. et al. Immunostimulatory DNA sequences function as T helper-1 promoting adjuvants. Nature Med. 3, 849–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Halpern, M. D., Kurlander, R. J. & Pisetsky, D. S. Bacterial DNA induces murine interferon-γ production by stimulation of IL-12 and tumor necrosis factor-α. Cell Immunol. 167, 72–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Rankin, R. et al. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucl. Acid Drug Dev. 11, 333–340 (2001).

    Article  CAS  Google Scholar 

  36. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita, F. & Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 166, 2372–2377 (2001). This is the first work to demonstrate that distinct types of CpG oligodeoxynucleotide (ODN) exist, and that human immune cells are differentially responsive to these different ODNs.

    Article  CAS  PubMed  Google Scholar 

  37. Krug, A. et al. Identification of CpG oligonucleotide sequences with high induction of IFNα/β in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Bauer, M. et al. Bacterial CpG DNA triggers activation and maturation of human CD11c, CD123+ dendritic cells. J Immunol. 166, 5000–5007 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hartmann, G. et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol. 33, 1633–1641 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Marshall, J. D. et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol. 73, 781–792 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Hartmann, G. & Krieg, A. M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Verthelyi, D. et al. CpG oligodeoxynucleotides as vaccine adjuvants in primates. J. Immunol. 168, 1659–1663 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Davis, H. L. et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine 18, 1920–1924 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Verthelyi, D. & Klinman, D. M. Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin. Immunol. 109, 64–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Broide, D. H. et al. Systemic administration of immunostimulatory DNA sequences mediates reversible inhibition of TH2 responses in a mouse model of asthma. J. Clin. Immunol. 21, 175–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kanellos, T. S. et al. Mammalian granulocyte–macrophage colony stimulating factor and some CpG motifs have an effect on the immunogenicity of DNA and subunit vaccines in fish. Immunology 96, 507–510 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gomis, S. et al. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect. Immun. 71, 857–863 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pyles, R. B. et al. Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection. J. Virol. 76, 11387–11396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashkar, A. A., Bauer, S., Mitchell, W. J., Vieira, J. & Rosenthal, K. L. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol. 77, 8948–8956 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klinman, D. M., Conover, J. & Coban, C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect. Immun. 67, 5658–5663 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Krieg, A. M., Homan, L. L., Yi, A. K. & Harty, J. T. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J. Immunol. 161, 2428–2434 (1998).

    CAS  PubMed  Google Scholar 

  54. Walker, P. S. et al. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12 and IFN-γ dependent mechanisms. Proc. Natl Acad. Sci. USA 96, 6970–6975 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elkins, K. L., Rhinehart-Jones, T. R., Stibitz, S., Conover, J. S. & Klinman, D. M. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 162, 2291–2298 (1999).

    CAS  PubMed  Google Scholar 

  56. Zimmermann, S. et al. CpG oligodeoxynucleotides trigger protective and curative TH1 responses in lethal murine Leishmaniasis. J. Immunol. 160, 3627–3630 (1998). This work was the first to establish that CpG ODNs could be used to increase host resistance to infectious pathogens.

    CAS  PubMed  Google Scholar 

  57. Klinman, D. M. Therapeutic applications of CpG-containing oligodeoxynucleotides. Antisense Nucl. Acid Drug Dev. 8, 181–184 (1998).

    Article  CAS  Google Scholar 

  58. Chiaramonte, M. G., Hesse, M., Cheever, A. W. & Wynn, T. A. CpG Oligonucleotides can prophylactically immunize against TH2-mediated schistosome egg induced pathology by an IL-12 independent mechanism. J. Immunol. 164, 973–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Yamamoto, T., Yamamoto, S., Katoaka, T. & Tokunaga, T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances IFN production and natural killer activity. Microbiol. Immunol. 38, 831–836 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Klinman, D. M., Barnhart, K. M. & Conover, J. CpG motifs as immune adjuvants. Vaccine 17, 19–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Pacanowski, J. et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98, 3016–3021 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Azzoni, L. et al. Sustained impairment of IFNγ secretion in suppressed HIV-infected patients despite mature NK cell recovery, evidence for a defective reconstitution of innate immunity. J. Immunol. 168, 5764–5770 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Chehimi, J. et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J. Immunol. 168, 4796–4801 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Corbett, E. L. et al. HIV-1/AIDS and the control of other infectious diseases in Africa. Lancet 359, 2177–2187 (2002).

    Article  PubMed  Google Scholar 

  65. Verthelyi, D. et al. CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection. J. Immunol. 170, 4717–4723 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Weinberg, E. D. Pregnancy-associated depression of cell-mediated immunity. Rev. Infect. Dis. 6, 814–831 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Priddy, K. D. Immunologic adaptations during pregnancy. J. Obstet. Gynecol. Neonatal Nurs. 26, 388–394 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Wegmann, T. G., Lin, H., Guilbert, L. & Mosmann, T. R. Bidirectional cytokine interactions in the maternal–fetal relationship, is successful pregnancy a TH2 phenomenon? Immunol. Today 14, 353–356 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Lin, H., Mosmann, T. R., Guilbert, L., Tuntipopipat, S. & Wegmann, T. G. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J. Immunol. 151, 4562–4573 (1993).

    CAS  PubMed  Google Scholar 

  70. Raghupathy, R. TH1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Sano, M., Mitsuyama, M., Watanabe, Y. & Nomoto, K. Impairment of T cell-mediated immunity to Listeria monocytogenes in pregnant mice. Microbiol. Immunol. 30, 165–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  72. Krishnan, L. et al. Pregnancy impairs resistance of C57BL/6 mice to Leishmania major infection and causes decreased antigen-specific IFN-γ response and increased production of T helper 2 cytokines. J. Immunol. 156, 644–652 (1996).

    CAS  PubMed  Google Scholar 

  73. Ito, S., Ishii, K., Shirot, H. & Klinman, D. M. CpG oligodeoxynucleotides improve the survival of pregnant and fetal mice following Listeria monocytogenes infection. Infect. Immunol. (in the press).

  74. Amaral, V. F. et al. Leishmania amazonensis: the asian rhesus macaques (Macaca mulata) as an experimental model for the study of cutaneous leishmaniasis. Exp. Parasitol. 82, 34–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Equils, O. et al. Toll-like receptor 2 (TLR2) and TLR9 signaling results in HIV-long terminal repeat trans-activation and HIV replication in HIV-1 transgenic mouse spleen cells, implications of simultaneous activation of TLRs on HIV replication. J. Immunol. 170, 5159–5164 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Olbrich, A. R., Schimmer, S. & Dittmer, U. Preinfection treatment of resistant mice with CpG oligodeoxynucleotides renders them susceptible to friend retrovirus-induced leukemia. J. Virol. 77, 10658–10662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gursel, I., Gursel, M., Ishii, K. J. & Klinman, D. M. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J. Immunol. 167, 3324–3328 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Davis, H. L. et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 160, 870–876 (1998).

    CAS  PubMed  Google Scholar 

  79. Shirota, H. et al. Novel roles of CpG oligodeoxynucleotides as a leader for the sampling and presentation of CpG-tagged antigen by dendritic cells. J. Immunol. 167, 66–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Moldoveanu, Z., Love-Homan, L., Huang, W. Q. & Krieg, A. M. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 1216–1224 (1998).

  81. Kovarik, J. et al. CpG oligonucleotides can cirmcuvent the TH2 polorization of neonatal responses to vaccines but fail to fully redirect TH2 responses established by neonatal priming. J. Immunol. 162, 1611–1617 (1999).

    CAS  PubMed  Google Scholar 

  82. McCluskie, M. J. & Davis, H. L. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J. Immunol. 161, 4463–4466 (1998).

    CAS  PubMed  Google Scholar 

  83. Brazolot Millan, C. L., Weeratna, R., Krieg, A. M., Siegrist, C. A. & Davis, H. L. CpG DNA can induce strong TH1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl Acad. Sci. USA 95, 15553–15558 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Eastcott, J. W. et al. Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine 19, 1636–1642 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Branda, R. F. et al. Amplification of antibody production by phosphorothioate oligodeoxynucleotides. J. Lab. Clin. Med. 128, 329–338 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Horner, A. A. et al. Immunostimulatory DNA is a potent mucosal adjuvant. Cell. Immunol. 190, 77–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. McCluskie, M. J. & Davis, H. L. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine 19, 413–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Jones, T. R. et al. Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenic vaccine in Aotus monkeys. Vaccine 17, 3065–3071 (1999). This report demonstrates that CpG ODNs designed for human use could act as immune adjuvants in non-human primates.

    Article  CAS  PubMed  Google Scholar 

  89. Klinman, D. M., Xie, H., Little, S. F., Currie, D. & Ivins, B. CpG Oligonucleotides improve the protective immune response induced by the anthrax vaccination of rhesus macaques. Vaccine (in the press).

  90. von Stebut, E. et al. Leishmania major infected murine langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous leishmaniasis. Eur. J. Immunol. 30, 3498–3506 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Prince, G. A. et al. Immunoprotective activity and safety of a respiratory syncytial virus vaccine, mucosal delivery of fusion glycoprotein with a CpG oligodeoxynucleotide adjuvant. J. Virol. 77, 13156–13160 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davis, H. L. Use of CpG DNA for enhancing specific immune responses. Curr. Top. Microbiol. Immunol. 247, 171–184 (2000).

    CAS  PubMed  Google Scholar 

  93. Sears, M. R. Worldwide trends in asthma mortality. Bull. Int. Union Tuberc. Lung Dis. 66, 79–83 (1991).

    CAS  PubMed  Google Scholar 

  94. Nakajima, H. et al. CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the mouse trachea. Am. Rev. Respir. Dis. 146, 374–377 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Nakajima, H., Iwamoto, I. & Yoshida, S. Aerosolized recombinant interferon-γ prevents antigen-induced eosinophil recruitment in mouse trachea. Am. Rev. Respir. Dis. 148, 1102–1104 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Sur, S. et al. Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses. J. Immunol. 157, 4173–4180 (1996).

    CAS  PubMed  Google Scholar 

  98. Shirakawa, T., Enomoto, T., Shimazu, S. & Hopkin, J. M. The inverse association between tuberculin responses and atopic disorder. Science 275, 77–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Erb, K. J., Holloway, J. W., Sobeck, A., Mol, l H. & Le Gros, G. Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J. Exp. Med. 187, 561–569 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sur, S. et al. Long-term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immunol. 162, 6284–6291 (1999).

    CAS  PubMed  Google Scholar 

  101. Kline, J. N. et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol. 160, 2555–2559 (1998). This work was the first to establish that the combination of CpG ODNs plus allergen had a beneficial effect on allergic asthma.

    CAS  PubMed  Google Scholar 

  102. Santeliz, J. V., Van Nest, G., Traquina, P., Larsen, E. & Wills-Karp, M. Amb a 1-linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. J. Allergy Clin. Immunol. 109, 455–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Horner, A. A. et al. Immunostimulatory DNA inhibits IL-4-dependent IgE synthesis by human B cells. J. Allergy Clin. Immunol. 108, 417–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Coyle, A. J. et al. Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production, inhibition by a non-anaphylactogenic anti-IgE antibody. J. Exp. Med. 183, 1303–1310 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Snapper, C. M., Peschel, C. & Paul, W. E. Interferon-γ stimulates IgG2a secretion by murine B cells stimulated with bacterial lipopolysaccharide. J. Immunol. 140, 2121–2130 (1988).

    CAS  PubMed  Google Scholar 

  106. Tighe, H. et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol. 30, 1939–1947 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Tighe, H. et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin. Immunol. 106, 124–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Horner, A. A. et al. DNA-based vaccination reduces the risk of lethal anaphylactic hypersensitivity in mice. J. Allergy Clin. Immunol. 106, 349–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Horner, A. A., Takabaysahi, K., Zubeldia, J. M. & Raz, E. Immunostimulatory DNA-based therapeutics for experimental and clinical allergy. Allergy 57 (Suppl. 72), 24–29 (2002).

    Article  PubMed  Google Scholar 

  110. Horner, A. A. et al. Optimized conjugation ratios lead to allergen immunostimulatory oligodeoxynucleotide conjugates with retained immunogenicity and minimal anaphylactogenicity. J. Allergy Clin. Immunol. 110, 413–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Horner, A. A. & Raz, E. Immunostimulatory sequence oligodeoxynucleotide-based vaccination and immunomodulation, two unique but complementary strategies for the treatment of allergic diseases. J. Allergy Clin. Immunol. 110, 706–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Gilkeson, G. S., Riuz, P., Howell, D., Lefkowith, J. B. & Pisetsky, D. S. Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. Clin. Immunol. Immunopathol. 68, 283–292 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Gilkeson, G. S., Pippen, A. M. & Pisetsky, D. S. Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J. Clin. Invest. 95, 1398–1402 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Steinberg, A. D., Krieg, A. M., Gourley, M. F. & Klinman, D. M. Theoretical and experimental approaches to generalized autoimmunity. Immunol. Rev. 118, 129–163 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Klinman, D. M. Polyclonal B cell activation in lupus-prone mice precedes and predicts the development of autoimmune disease. J. Clin. Invest. 86, 1249–1254 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Linker-Israeli, M. et al. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. J. Immunol. 147, 117–123 (1991).

    CAS  PubMed  Google Scholar 

  117. Krieg, A. M. CpG DNA, a pathogenic factor in systemic lupus erythematosus? J. Clin. Immunol. 15, 284–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Yi, A. -K., Hornbeck, P., Lafrenz, D. E. & Krieg, A. M. CpG DNA rescue of murine B lymphoma cells from anti-IgM induced growth arrest and programmed cell death is associated with increased expression of c-Myc and Bcl-xl. J. Immunol. 157, 4918–4925 (1996).

    CAS  PubMed  Google Scholar 

  119. Mor, G. et al. Do DNA vaccines induce autoimmune disease? Hum. Gene Ther. 8, 293–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Katsumi, A. et al. Humoral and cellural immunity to an encoded protein induced by direct DNA injection. Hum. Gene Ther. 5, 1335–1339 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Gilkeson, G. S. et al. Effects of bacterial DNA on cytokine production by (NZB/NZW)F1 mice. J. Immunol. 161, 3890–3895 (1998).

    CAS  PubMed  Google Scholar 

  122. Segal, B. M., Klinman, D. M. & Shevach, E. M. Microbial products induce autoimmune disease by an IL-12 dependent process. J. Immunol. 158, 5087–5091 (1997).

    CAS  PubMed  Google Scholar 

  123. Segal, B. M., Chang, J. T. & Shevach, E. M. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalotogenic T cells in vivo. J. Immunol. 164, 5683–5688 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bachmaier, K. et al. Chlamydia infections and heart disease linked through antigenic mimicry. Science 283, 1335–1339 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Zeuner, R. A., Verthelyi, D., Gursel, M., Ishii, K. J. & Klinman, D. M. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis. Arthritis Rheum. 48, 1701–1707 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Sparwasser, T. et al. Bacterial DNA causes septic shock. Nature 386, 336–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Cowdery, J. S., Chace, J. H., Yi, A. -K. & Krieg, A. M. Bacterial DNA induces NK cells to produce IFNγ in vivo and increases the toxicity of lipopolysaccharides. J. Immunol. 156, 4570–4575 (1996).

    CAS  PubMed  Google Scholar 

  128. Hartmann, G., Krug, A., Waller, K. & Endres, S. Oligodeoxynucleotides enhance LPS-stimulated synthesis of TNF, dependence on phosphorothioate modification and reversal by heparin. Mol. Med. 2, 429–438 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Klinman, D. M. et al. DNA vaccines, safety and efficacy issues. Springer Semin. Immunopathol. 19, 245–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, R. et al. Induction of antigen specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Calarota, S. et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1 infected patients. Lancet 351, 1320–1325 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Yacyshyn, B. R. et al. Dose ranging pharmacokinetic trial of high-dose alicaforsen (intercellular adhesion molecule-1 antisense oligodeoxynucleotide) (ISIS 2302) in active Crohn's disease. Aliment. Pharmacol. Ther. 16, 1761–1770 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, M. A. DNA vaccines, a review. J. Intern. Med. 253, 402–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Halperin, S. A. et al. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine 21, 2461–2467 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Klinman, D. M. et al. Immunotherapeutic applications of CpG-containing oligodeoxynucleotides. Drug News Perspect. 13, 289–296 (2000).

    CAS  PubMed  Google Scholar 

  137. Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev. Vacc. 2, 305–315 (2003).

    Article  CAS  Google Scholar 

  138. Magone, M. T., Chan, C. C., Beck, L., Whitcup, S. M. & Raz, E. Systemic or mucosal administration of immunostimulatory DNA inhibits early and late phases of murine allergic conjunctivitis. Eur. J. Immunol. 30, 1841–1850 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. von Hunolstein, C. et al. The adjuvant effect of synthetic oligodeoxynucleotide containing CpG motif converts the anti-Haemophilus influenzae type b glycoconjugates into efficient anti-polysaccharide and anti-carrier polyvalent vaccines. Vaccine 19, 3058–3066 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Temperton, N. J. et al. Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine, adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. J. Med. Virol. 70, 86–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Al Mariri, A. et al. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect. Immun. 69, 4816–4822 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hogarth, P. J., Jahans, K. J., Hecker, R., Hewinson, R. G. & Chambers, M. A. Evaluation of adjuvants for protein vaccines against tuberculosis in guinea pigs. Vaccine 21, 977–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Su, Z., Tam, M. F., Jankovic, D. & Stevenson, M. M. Vaccination with novel immunostimulatory adjuvants against blood-stage malaria in mice. Infect. Immun. 71, 5178–5187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mendez, S. et al. Coinjection with CpG-containing immunostimulatory oligodeoxynucleotides reduces the pathogenicity of a live vaccine against cutaneous Leishmaniasis but maintains its potency and durability. Infect. Immun. 71, 5121–5129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Frank, F. M. et al. Use of a purified Trypanosoma cruzi antigen and CpG oligodeoxynucleotides for immunoprotection against a lethal challenge with trypomastigotes. Vaccine 22, 77–86 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

I hold a patent position on the discovery of CpG oligodeoxynucleotides.

Related links

Related links

DATABASES

LocusLink

CD4

CEBP

CREB

IFN-α

IFN-γ

IL-1

IL-4

IL-5

IL-6

IL-12

IL-18

IRAK

MYD88

NF-κB

TLR9

TNF

TRAF6

Glossary

PATHOGEN-ASSOCIATED MOLECULAR PATTERNS

(PAMPs). The innate immune system is stimulated by interaction with a highly conserved, but limited, set of molecular structures that are expressed by infectious microorganisms but absent (or rarely expressed) by the host. These PAMPs are recognized by a set of germline-encoded receptors, of which the family of Toll-like receptors is the best described.

TH1/TH2 CELLS

Two functionally distinct subsets of CD4+ T cells. T helper 1 (TH1) cells produce type 1 cytokines (including interleukin-2, IL-2, and interferon-γ) that support macrophage activation, the generation of cytotoxic T cells and the production of opsonizing antibodies. TH2 cells produce type 2 cytokines (including IL-4, IL-5 and/or IL-13) that support B-cell activation, the production of non-opsonizing antibodies, allergic reactions and the expulsion of extracellular parasites.

PLASMACYTOID DENDRITIC CELLS

(pDCs). A subset of DCs that were first described in humans and termed 'plasmacytoid' because of their microscopic appearance, which is similar to plasmablasts. In humans, these DCs can be derived from lineage-negative stem cells in peripheral blood and are the main producers of type I interferons (IFNs) in response to viral infections. Recent studies have identified a subset of type I IFN-producing DCs in mice, which are characterized by expression of B220 and Ly6C/G.

TOXIC SHOCK

A state of circulatory collapse and end-organ failure that is associated with the release of tumour-necrosis factor by host mononuclear cells in response to an infectious challenge.

LUPUS

(Also known as systemic lupus erythematosus, SLE). Lupus is an autoimmune disease that affects many tissues and cell types. Disease is characterized by the production of pathogenic autoantibodies that form immune complexes that can damage the kidneys and lungs. Multiple immune abnormalities, particularly associated with the increased activation of B and T cells, typify active disease.

EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

(EAE). An animal model of multiple sclerosis — a chronic demyelinating disease in humans. In animals, EAE is induced by injecting antigens derived from the myelin sheath of nerve cells, including myelin basic protein, proteolipid protein and myelin oligodendrocyte glycoprotein, together with a potent adjuvant.

MOLECULAR MIMICRY

A mechanism for the induction of autoimmunity in which the host mounts an immune response against a protein or peptide expressed by a pathogen that resembles a determinant also present on self-tissue. The induction of a pathogen-specific immune response therefore results in a crossreactive response to the self-tissue that causes pathology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinman, D. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4, 249–259 (2004). https://doi.org/10.1038/nri1329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing