Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases

Abstract

At present, we only have indirect knowledge of the protective role of antigen-specific T cells in human viral infections, and it has been difficult to show a direct correlation between quantitative and qualitative measures of T-cell immunity and virus-associated diseases. However, as described in this Opinion article, recent advances in the characterization of T-cell functions and in the development of standardized T-cell assays have led to the identification of distinct functional signatures of T-cell responses that correlate with levels of viral replication and disease activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of viral infection based on antigen load and exposure.
Figure 2: Functional signatures of virus-specific CD4+ and CD8+ T-cell responses dictated by antigen load.
Figure 3: Application of functional signatures of virus-specific CD4+ and CD8+ T cells to clinical monitoring of virus-associated disease activity.

Similar content being viewed by others

References

  1. Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nature Immunol. 6, 873–879 (2005).

    Article  CAS  Google Scholar 

  2. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  3. Cox, J. H. et al. Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res. Hum. Retroviruses 21, 68–81 (2005).

    Article  CAS  Google Scholar 

  4. Maecker, H. T. et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 6, 13 (2005).

    Article  Google Scholar 

  5. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).

    Article  CAS  Google Scholar 

  6. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a re-evaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  7. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  8. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  9. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    Article  CAS  Google Scholar 

  10. Sallusto, F. et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  11. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  Google Scholar 

  12. Lyons, A. B. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154 (2000).

    Article  CAS  Google Scholar 

  13. Hill, P. C. et al. ESAT-6/CFP-10 fusion protein and peptides for optimal diagnosis of Mycobacterium tuberculosis infection by ex vivo enzyme-linked immunospot assay in the Gambia. J. Clin. Microbiol. 43, 2070–2074 (2005).

    Article  CAS  Google Scholar 

  14. Liebeschuetz, S. et al. Diagnosis of tuberculosis in South African children with a T-cell-based assay: a prospective cohort study. Lancet 364, 2196–2203 (2004).

    Article  CAS  Google Scholar 

  15. Lalvani, A. et al. Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet 357, 2017–2021 (2001).

    Article  CAS  Google Scholar 

  16. Chapman, A. L. et al. Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells. AIDS 16, 2285–2293 (2002).

    Article  Google Scholar 

  17. Lazarevic, V., Nolt, D. & Flynn, J. L. Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J. Immunol. 175, 1107–1117 (2005).

    Article  CAS  Google Scholar 

  18. Bunde, T. et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med. 201, 1031–1036 (2005).

    Article  CAS  Google Scholar 

  19. Sester, M. et al. Levels of virus-specific CD4 T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation 71, 1287–1294 (2001).

    Article  CAS  Google Scholar 

  20. Fishman, J. A. & Rubin, R. H. Infection in organ-transplant recipients. N. Engl. J. Med. 338, 1741–1751 (1998).

    Article  CAS  Google Scholar 

  21. Harari, A. et al. Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood 100, 1381–1387 (2002).

    Article  CAS  Google Scholar 

  22. Ellefsen, K. et al. Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. Eur. J. Immunol. 32, 3756–3764 (2002).

    Article  CAS  Google Scholar 

  23. Harari, A., Petitpierre, S., Vallelian, F. & Pantaleo, G. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103, 966–972 (2004).

    Article  CAS  Google Scholar 

  24. Harari, A., Vallelian, F. & Pantaleo, G. Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur. J. Immunol. 34, 3525–3533 (2004).

    Article  CAS  Google Scholar 

  25. Zimmerli, S. C. et al. HIV-1-specific IFN-γ/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc. Natl Acad. Sci. USA 102, 7239–7244 (2005).

    Article  CAS  Google Scholar 

  26. Harari, A., Vallelian, F., Meylan, P. R. & Pantaleo, G. Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J. Immunol. 174, 1037–1045 (2005).

    Article  CAS  Google Scholar 

  27. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  Google Scholar 

  28. Callan, M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    Article  CAS  Google Scholar 

  29. Appay, V. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192, 63–75 (2000).

    Article  CAS  Google Scholar 

  30. Betts, M. R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  Google Scholar 

  31. Komanduri, K. V. et al. Direct measurement of CD4+ and CD8+ T-cell responses to CMV in HIV-1-infected subjects. Virology 279, 459–470 (2001).

    Article  CAS  Google Scholar 

  32. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  Google Scholar 

  33. Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nature Immunol. 3, 1061–1068 (2002).

    Article  CAS  Google Scholar 

  34. Addo, M. M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  Google Scholar 

  35. Iyasere, C. et al. Diminished proliferation of human immunodeficiency virus-specific CD4+ T cells is associated with diminished interleukin-2 (IL-2) production and is recovered by exogenous IL-2. J. Virol. 77, 10900–10909 (2003).

    Article  CAS  Google Scholar 

  36. Younes, S. A. et al. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J. Exp. Med. 198, 1909–1922 (2003).

    Article  CAS  Google Scholar 

  37. Amyes, E. et al. Characterization of the CD4+ T cell response to Epstein–Barr virus during primary and persistent infection. J. Exp. Med. 198, 903–911 (2003).

    Article  CAS  Google Scholar 

  38. Palmer, B. E., Boritz, E. & Wilson, C. C. Effects of sustained HIV-1 plasma viremia on HIV-1 Gag-specific CD4+ T cell maturation and function. J. Immunol. 172, 3337–3347 (2004).

    Article  CAS  Google Scholar 

  39. Lichterfeld, M. et al. Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J. Exp. Med. 200, 701–712 (2004).

    Article  CAS  Google Scholar 

  40. Dunne, P. J. et al. Quiescence and functional reprogramming of Epstein–Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood 106, 558–565 (2005).

    Article  CAS  Google Scholar 

  41. Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T-cells. Blood 7 Feb 2006 (doi:10.1182/blood-2005-12-4818).

  42. Betts, M. R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78 (2003).

    Article  CAS  Google Scholar 

  43. Betts, M. R. & Koup, R. A. Detection of T-cell degranulation: CD107a and b. Methods Cell. Biol. 75, 497–512 (2004).

    Article  CAS  Google Scholar 

  44. Giudotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    Article  Google Scholar 

  45. Komanduri, K. V. et al. Loss of cytomegalovirus-specific CD4+ T cell responses in human immunodeficiency virus type 1-infected patients with high CD4+ T cell counts and recurrent retinitis. J. Infect. Dis. 183, 1285–1289 (2001).

    Article  CAS  Google Scholar 

  46. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  47. Lang, K. S. et al. Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. Eur. J. Immunol. 35, 738–745 (2005).

    Article  CAS  Google Scholar 

  48. Sze, D. M. et al. Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8+CD57+CD28 compartment. Blood 98, 2817–2827 (2001).

    Article  CAS  Google Scholar 

  49. van Baarle, D., Kostense, S., van Oers, M. H., Hamann, D. & Miedema, F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol. 23, 586–591 (2002).

    Article  CAS  Google Scholar 

  50. Weekes, M. P. et al. Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28CD8+ T-cell population. Immunology 98, 443–449 (1999).

    Article  CAS  Google Scholar 

  51. Brenchley, J. M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003).

    Article  CAS  Google Scholar 

  52. Aandahl, E. M. et al. CD7 is a differentiation marker that identifies multiple CD8 T cell effector subsets. J. Immunol. 170, 2349–2355 (2003).

    Article  CAS  Google Scholar 

  53. Liu, Z. et al. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the multicenter AIDS cohort study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 16, 83–92 (1997).

    Article  CAS  Google Scholar 

  54. Roederer, M., Herzenberg, L. A. & Herzenberg, L. A. Changes in antigen densities on leukocyte subsets correlate with progression of HIV disease. Int. Immunol. 8, 1–11 (1996).

    Article  CAS  Google Scholar 

  55. Van Baarle, D. et al. Lack of Epstein–Barr virus- and HIV-specific CD27 CD8+ T cells is associated with progression to viral disease in HIV-infection. AIDS 16, 2001–2011 (2002).

    Article  CAS  Google Scholar 

  56. Hess, C. et al. HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363, 863–866 (2004).

    Article  CAS  Google Scholar 

  57. Paiardini, M. et al. Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals. J. Immunol. 174, 2900–2909 (2005).

    Article  CAS  Google Scholar 

  58. Doherty, P. C. & Christensen, J. P. Accessing complexity: the dynamics of virus-specific T cell responses. Annu. Rev. Immunol. 18, 561–592 (2000).

    Article  CAS  Google Scholar 

  59. Sprent, J. & Surh, C. D. T cell memory. Annu. Rev. Immunol. 20, 551–579 (2002).

    Article  CAS  Google Scholar 

  60. Semmo, N. et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology 41, 1019–1028 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pantaleo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

CDC Infectious Disease Information

CMV

EBV

HIV-1

HSV

FURTHER INFORMATION

Giuseppe Pantaleo's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantaleo, G., Harari, A. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol 6, 417–423 (2006). https://doi.org/10.1038/nri1840

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing