Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling

Key Points

  • The pre-B-cell receptor (pre-BCR), which comprises two Igμ chains and two germline-encoded surrogate light chains (SLC) that are associated with the signalling subunits Igα and Igβ, is formed on pre-B cells following productive recombination of the immunoglobulin heavy chain gene. Although only transiently expressed, the pre-BCR marks an important checkpoint in B-cell development and regulates diverse processes, such as proliferation, allelic exclusion of the second heavy chain allele, termination of SLC expression and initiation of immunoglobulin light chain (IgL) gene recombination.

  • Downstream of the pre-BCR, SYK (spleen tyrosine kinase) has a central role in the activation of pathways that regulate the proliferation and differentiation of pre-B cells. In the context of proliferation, SYK promotes the activation of the lipid-modifying kinase phosphoinositide 3 kinase (PI3K) and its downstream mediator protein kinase B (PKB). In addition, SYK mediates differentiation through the adaptor protein SH2-domain-containing leukocyte protein of 65 kDa (SLP65), which induces the activation of IgL gene recombination.

  • Pre-BCR signalling through PI3K–PKB inhibits IgL gene recombination by inactivating the forkhead box class O (FOXO) family of transcription factors, which were recently reported to activate the RAG (recombination-activating gene) machinery and V(D)J recombination of the IgL gene. SLP65 decreases PKB activity in pre-B cells and reduces the inhibitory phosphorylation of FOXO proteins, thereby providing a molecular link between pre-BCR signalling and IgL gene recombination.

  • V(D)J recombination is tightly linked to G0 and G1 phases of the cell cycle, as the recurrence of double-stranded breaks during DNA replication or mitosis could compromise genetic integrity. This link is mainly mediated at the level of RAG2 regulation, which accumulates during G1 and is periodically degraded on S phase entry.

  • Cell cycle progression at the G1 to S phase transition is regulated by the concerted action of diverse factors, including cyclin-dependent kinase (CDK)–cyclin complexes and their inhibitors. Important cell cycle regulators, such as the CDK inhibitor p27, the retinoblastoma family protein p130 and D-type cyclins, have been shown to be direct targets of FOXO activity, suggesting that FOXO proteins not only induce RAG gene expression, but also determine a cell cycle state that enables RAG complex stability and V(D)J recombination.

Abstract

The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy chain gene. Signals through the pre-BCR are required for initiating diverse processes in pre-B cells, including proliferation and recombination of the light chain gene, which eventually lead to the differentiation of pre-B cells to immature B cells. However, the molecular mechanisms by which the pre-BCR promotes these processes remain largely unresolved. Recent findings suggest that forkhead box O (FOXO) transcription factors connect pre-BCR signalling to the activation of the recombination machinery. In this Review, we discuss how FOXO transcription factors are regulated by the pre-BCR to allow the progression of the cell cycle and the recombination of the light chain gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pre-BCR and B-cell development.
Figure 2: The central role of SYK downstream of the pre-BCR.
Figure 3: Control of cell cycle progression by PKB and FOXO proteins.
Figure 4: Regulation of IgL gene recombination by the PI3K–PKB–FOXO pathway.

Similar content being viewed by others

References

  1. Schlissel, M. S. Regulating antigen-receptor gene assembly. Nature Rev. Immunol. 3, 890–899 (2003).

    Article  CAS  Google Scholar 

  2. Karasuyama, H., Rolink, A. & Melchers, F. Surrogate light chain in B cell development. Adv. Immunol. 63, 1–41 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Nishimoto, N. et al. Normal pre-B cells express a receptor complex of mu heavy chains and surrogate light-chain proteins. Proc. Natl Acad. Sci. USA 88, 6284–6288 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jumaa, H., Hendriks, R. W. & Reth, M. B cell signaling and tumorigenesis. Annu. Rev. Immunol. 23, 415–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Reth, M., Petrac, E., Wiese, P., Lobel, L. & Alt, F. W. Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO J. 6, 3299–3305 (1987). This study shows that the membrane expression of Igμ by pre-B cells activates the Igκ locus, which provided the first suggestion of the sequential recombination of IgH and IgL genes and indicated that the pre-B cell-stage functions as an important checkpoint in early B-cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rolink, A. G. et al. B cell development in the mouse from early progenitors to mature B cells. Immunol. Lett. 68, 89–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol. 4, 712–720 (2003).

    Article  CAS  Google Scholar 

  10. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Melchers, F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nature Rev. Immunol. 5, 578–584 (2005).

    Article  CAS  Google Scholar 

  12. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Gong, S. & Nussenzweig, M. C. Regulation of an early developmental checkpoint in the B cell pathway by Igβ. Science 272, 411–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Pelanda, R., Braun, U., Hobeika, E., Nussenzweig, M. C. & Reth, M. B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-α and Ig-β. J. Immunol. 169, 865–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Kitamura, D. et al. A critical role of λ5 protein in B cell development. Cell 69, 823–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Mundt, C., Licence, S., Shimizu, T., Melchers, F. & Martensson, I. L. Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J. Exp. Med. 193, 435–445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pelanda, R., Schaal, S., Torres, R. M. & Rajewsky, K. A prematurely expressed Igκ transgene, but not VκJκ gene segment targeted into the Igκ locus, can rescue B cell development in λ5-deficient mice. Immunity 5, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Galler, G. R. et al. Surface μ heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components. J. Exp. Med. 199, 1523–1532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuh, W., Meister, S., Roth, E. & Jack, H. M. Cutting Edge: signaling and cell surface expression of a μ H chain in the absence of λ5: a paradigm revisited. J. Immunol. 171, 3343–3347 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Su, Y. W. et al. Identification of a pre-BCR lacking surrogate light chain. J. Exp. Med. 198, 1699–1706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimizu, T., Mundt, C., Licence, S., Melchers, F. & Martensson, I. L. VpreB1/VpreB2/λ5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J. Immunol. 168, 6286–6293 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Minegishi, Y. et al. Mutations in the human λ5/14.1 gene result in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187, 71–77 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thompson, E. C. et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity 26, 335–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Parker, M. J. et al. The pre-B-cell receptor induces silencing of VpreB and λ5 transcription. EMBO J. 24, 3895–3905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geier, J. K. & Schlissel, M. S. Pre-BCR signals and the control of Ig gene rearrangements. Semin. Immunol. 18, 31–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Meixlsperger, S. et al. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 26, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bradl, H. & Jack, H. M. Surrogate light chain-mediated interaction of a soluble pre-B cell receptor with adherent cell lines. J. Immunol. 167, 6403–6411 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Gauthier, L., Rossi, B., Roux, F., Termine, E. & Schiff, C. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl Acad. Sci. USA 99, 13014–13019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rolink, A. G., Winkler, T., Melchers, F. & Andersson, J. Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J. Exp. Med. 191, 23–32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nature Immunol. 4, 849–856 (2003).

    Article  CAS  Google Scholar 

  33. Kohler, F. et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez, M. et al. Signal transduction by immunoglobulin is mediated through Igα and Igβ. J. Exp. Med. 178, 1049–1055 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Flaswinkel, H. & Reth, M. Dual role of the tyrosine activation motif of the Ig-alpha protein during signal transduction via the B cell antigen receptor. EMBO J. 13, 83–89 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rowley, R. B., Burkhardt, A. L., Chao, H. G., Matsueda, G. R. & Bolen, J. B. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Igα/Igβ immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270, 11590–11594 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Futterer, K., Wong, J., Grucza, R. A., Chan, A. C. & Waksman, G. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J. Mol. Biol. 281, 523–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kurosaki, T. et al. Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J. Exp. Med. 182, 1815–1823 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, A. M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Wossning, T. et al. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J. Exp. Med. 203, 2829–2840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deane, J. A. & Fruman, D. A. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu. Rev. Immunol. 22, 563–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Kanie, T. et al. TEL–Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways. Leukemia 18, 548–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Streubel, B., Vinatzer, U., Willheim, M., Raderer, M. & Chott, A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20, 313–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Aiba, Y., Kameyama, M., Yamazaki, T., Tedder, T. F. & Kurosaki, T. Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood 111, 1497–1503 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nature Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  48. Vanhaesebroeck, B. & Alessi, D. R. The PI3K–PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jumaa, H. et al. Deficiency of the adaptor SLP65 in pre-B-cell acute lymphoblastic leukaemia. Nature 423, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP65 acts as a tumor suppressor that limits pre-B cell expansion. Nature Immunol. 4, 38–43 (2003).

    Article  CAS  Google Scholar 

  52. Hayashi, K., Yamamoto, M., Nojima, T., Goitsuka, R. & Kitamura, D. Distinct signaling requirements for Dμ selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 18, 825–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Fleming, H. E. & Paige, C. J. Cooperation between IL-7 and the pre-B cell receptor: a key to B cell selection. Semin. Immunol. 14, 423–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Storch, B., Meixlsperger, S. & Jumaa, H. The Ig-α ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur. J. Immunol. 37, 252–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Marshall, A. J., Fleming, H. E., Wu, G. E. & Paige, C. J. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J. Immunol. 161, 6038–6045 (1998).

    CAS  PubMed  Google Scholar 

  56. Su, Y. W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Chiu, C. W., Dalton, M., Ishiai, M., Kurosaki, T. & Chan, A. C. BLNK: molecular scaffolding through 'cis'-mediated organization of signaling proteins. EMBO J. 21, 6461–6472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlissel, M. S. Regulation of activation and recombination of the murine Igκ locus. Immunol. Rev. 200, 215–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nature Immunol. 7, 819–826 (2006).

    Article  CAS  Google Scholar 

  60. Murre, C. Helix–loop–helix proteins and lymphocyte development. Nature Immunol. 6, 1079–1086 (2005).

    Article  CAS  Google Scholar 

  61. Muljo, S. A. & Schlissel, M. S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nature Immunol. 4, 31–37 (2003). In this study, the authors show that the transcription factors SPI-B and IRF4 induce germline Igκ gene transcription in Abelson virus-transformed pro-B-cell lines, indicating a key role for these factors in the activation of IgL gene rearrangement.

    Article  CAS  Google Scholar 

  62. Ma, S., Turetsky, A., Trinh, L. & Lu, R. IFN regulatory factor 4 and 8 promote Ig light chain κ locus activation in pre-B cell development. J. Immunol. 177, 7898–7904 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008). This paper shows that loss of the transcription factors IRF4 and IRF8 results in a block in B-cell development at the pre-B-cell stage and demonstrates their key role in inducing IgL gene transcription and rearrangement.

    Article  CAS  PubMed  Google Scholar 

  64. Lu, R., Medina, K. L., Lancki, D. W. & Singh, H. IRF-4, 8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–1957 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Herzog, S. et al. SLP65 regulates immunoglobulin light chain gene recombination through the PI(3)K–PKB–Foxo pathway. Nature Immunol. 9, 623–631 (2008). The paper describes the role of FOXO transcription factors in IgL gene recombination and provides a mechanism by which this process is regulated by pre-BCR signalling.

    Article  CAS  Google Scholar 

  67. Tze, L. E. et al. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol. 3, e82 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Verkoczy, L. et al. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J. Immunol. 178, 6332–6341 (2007). References 67 and 68 show that basal signalling by a non-autoreactive BCR in immature B cells suppresses RAG protein complex expression and new IgL gene rearrangements in an PI3K-dependent manner, indicating that PI3K signalling has an important role in maintaining allelic exclusion and positive selection in B-cell development.

    Article  CAS  PubMed  Google Scholar 

  69. Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nature Immunol. 9, 613–622 (2008). This paper describes the connection of FOXO transcription factors with RAG protein complex expression and V(D)J recombination.

    Article  CAS  Google Scholar 

  70. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. Daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Vogt, P. K., Jiang, H. & Aoki, M. Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4, 908–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Coffer, P. J. & Burgering, B. M. Forkhead-box transcription factors and their role in the immune system. Nature Rev. Immunol. 4, 889–899 (2004).

    Article  CAS  Google Scholar 

  78. Dengler, H. S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nature Immunol. 9, 1388–1398 (2008). Using a conditional knockout mouse, this study describes the role of FOXO1 in crucial processes at different stages of B-cell development, including RAG gene expression and class-switch recombination.

    Article  CAS  Google Scholar 

  79. Grandage, V. L., Gale, R. E., Linch, D. C. & Khwaja, A. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, Mapkinase and p53 pathways. Leukemia 19, 586–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Birkenkamp, K. U. et al. FOXO3a induces differentiation of Bcr–Abl-transformed cells through transcriptional down-regulation of Id1. J. Biol. Chem. 282, 2211–2220 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Komatsu, N. et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR–ABL-expressing cells. J. Biol. Chem. 278, 6411–6419 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, J. & Desiderio, S. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11, 771–781 (1999). This paper describes how CDK-mediated phosphorylation and ubiquitin-dependent degradation of RAG2 restricts the activity of the RAG1–RAG2 complex to the G 1 phase of the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  85. Lin, W. C. & Desiderio, S. V(D)J recombination and the cell cycle. Immunol. Today 16, 279–289 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Mizuta, R., Mizuta, M., Araki, S. & Kitamura, D. RAG2 is down-regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J. Biol. Chem. 277, 41423–41427 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Z., Dordai, D. I., Lee, J. & Desiderio, S. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5, 575–589 (1996).

    Article  PubMed  Google Scholar 

  88. Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murray, A. W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ezhevsky, S. A., Ho, A., Becker-Hapak, M., Davis, P. K. & Dowdy, S. F. Differential regulation of retinoblastoma tumor suppressor protein by G1 cyclin-dependent kinase complexes in vivo. Mol. Cell. Biol. 21, 4773–4784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Canepa, E. T. et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Kaldis, P. Another piece of the p27Kip1 puzzle. Cell 128, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1. Mol. Cell. Biol. 20, 9138–9148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Coats, S. et al. A new pathway for mitogen-dependent CDK2 regulation uncovered in p27Kip1-deficient cells. Curr. Biol. 9, 163–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Soeiro, I. et al. p27Kip1 and p130 cooperate to regulate hematopoietic cell proliferation in vivo. Mol. Cell. Biol. 26, 6170–6184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell. Biol. 22, 7842–7852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cooper, A. B. et al. A unique function for cyclin D3 in early B cell development. Nature Immunol. 7, 489–497 (2006). This paper describes the key role of cyclin D3 in early B-cell development and shows that expression of cyclin D3, which is regulated by signals from cytokine receptors and the pre-BCR, is essential for the expansion phase of pre-B cells before IgL gene recombination is initiated.

    Article  CAS  Google Scholar 

  105. Fu, Z. & Tindall, D. J. FOXOs, cancer and regulation of apoptosis. Oncogene 27, 2312–2319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hayashi, K., Nojima, T., Goitsuka, R. & Kitamura, D. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice. J. Immunol. 173, 5980–5988 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Bai, L. et al. Phospholipase Cγ2 contributes to light-chain gene activation and receptor editing. Mol. Cell. Biol. 27, 5957–5967 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meade, J., Tybulewicz, V. L. & Turner, M. The tyrosine kinase Syk is required for light chain isotype exclusion but dispensable for the negative selection of B cells. Eur. J. Immunol. 34, 1102–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Schweighoffer, E., Vanes, L., Mathiot, A., Nakamura, T. & Tybulewicz, V. L. Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity 18, 523–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Diamant, E., Keren, Z. & Melamed, D. CD19 regulates positive selection and maturation in B lymphopoiesis: lack of CD19 imposes developmental arrest of immature B cells and consequential stimulation of receptor editing. Blood 105, 3247–3254 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Shivtiel, S., Leider, N., Sadeh, O., Kraiem, Z. & Melamed, D. Impaired light chain allelic exclusion and lack of positive selection in immature B cells expressing incompetent receptor deficient of CD19. J. Immunol. 168, 5596–5604 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Cedar, H. & Bergman, Y. Choreography of Ig allelic exclusion. Curr. Opin. Immunol. 20, 308–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Liang, H. E., Hsu, L. Y., Cado, D. & Schlissel, M. S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Alvarez, J. D., Anderson, S. J. & Loh, D. Y. V(D)J recombination and allelic exclusion of a TCR beta-chain minilocus occurs in the absence of a functional promoter. J. Immunol. 155, 1191–1202 (1995).

    CAS  PubMed  Google Scholar 

  115. Milne, C. D. & Paige, C. J. IL-7: a key regulator of B lymphopoiesis. Semin. Immunol. 18, 20–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Smart, F. M. & Venkitaraman, A. R. Inhibition of interleukin 7 receptor signaling by antigen receptor assembly. J. Exp. Med. 191, 737–742 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Loo, P. F., Dingjan, G. M., Maas, A. & Hendriks, R. W. Surrogate-light-chain silencing is not critical for the limitation of pre-B cell expansion but is for the termination of constitutive signaling. Immunity 27, 468–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Fisher, A. G. et al. Lymphoproliferative disorders in an IL-7 transgenic mouse line. Leukemia 7, S66–S68 (1993).

    PubMed  Google Scholar 

  119. Mertsching, E., Grawunder, U., Meyer, V., Rolink, T. & Ceredig, R. Phenotypic and functional analysis of B lymphopoiesis in interleukin-7-transgenic mice: expansion of pro/pre-B cell number and persistence of B lymphocyte development in lymph nodes and spleen. Eur. J. Immunol. 26, 28–33 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for helpful discussion. The work of H.J., M.R. and S.H. was supported by grants from the Deutsche Forschungsgemeinschaft (SFB620 and SFB746) and the Excellence Initiative of the German federal and state governments (EXC294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jumaa.

Related links

FURTHER INFORMATION

Hassan Jumaa's homepage

Glossary

V(D)J recombination

Somatic rearrangement of variable (V), diversity (D) and joining (J) regions of the genes that encode antigen receptors, leading to repertoire diversity of both B- and T-cell receptors.

Recombination signal sequences

Conserved elements that constitute recognition sites for the V(D)J recombinase proteins, which are encoded by RAG1 (recombination-activating gene 1) and RAG2. They consist of a palindromic heptamer that is immediately adjacent to the coding gene segments — V (variable), D (diversity) or J (joining) — and is separated by a 12- or 23-base-pair spacer from a conserved nonamer sequence.

Non-homologous end joining

The process that joins broken DNA ends without depending on extended homology. Components of this pathway include the proteins Ku70, Ku 80, ARTEMIS, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs).

μmt−/− mice

Mice that carry a stop codon in the first membrane exon of the Igμ constant region. They lack IgM+ B cells, and B-cell development is arrested before the differentiation stage at which IgD can be expressed.

Oncogene

An altered or mutant form of a proto-oncogene, which drive the proliferation of cells. Proto-oncogenes are usually involved in the control of cell growth and division.

Scaffold protein

A protein that assembles various proteins in a signalling pathway into multimolecular complexes for them to interact. Scaffold proteins are usually characterized by a large number of protein-binding domains.

Receptor editing

A molecular process that involves secondary rearrangements (mostly of the immunoglobulin light chains) that replace existing immunoglobulin molecules and generate a new antigen receptor with altered specificity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, S., Reth, M. & Jumaa, H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9, 195–205 (2009). https://doi.org/10.1038/nri2491

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing