Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD95, BIM and T cell homeostasis

Key Points

  • When activated by a cognate antigen, T cells proliferate and become effector cells to eliminate the source of the antigen.

  • After clearance of the antigen, these now useless T cells must be cleared to prevent autoimmunity.

  • Death following restimulation of the T cell receptor (TCR), as occurs during activation-induced cell death, is known to depend on the CD95–CD95 ligand pathway. This has long been considered a good model for the study of the contraction of T cell immune responses.

  • BCL-2-interacting mediator of cell death (BIM), a BCL-2-homology-domain-3-only protein of the B cell lymphoma 2 (BCL-2) family, was found to be necessary in vivo for the termination of acute immune responses.

  • Studies of mice lacking both CD95 and BIM have now shown that both proteins cooperate in the shutdown of immune responses.

  • We propose that the intensity of the signal through the TCR dictates which pathway will be activated to terminate the immune response.

Abstract

The relative importance of the intrinsic and extrinsic apoptotic pathways in the control of haematopoietic cell homeostasis has been a matter of debate for many years. Cell death is omnipresent in this cellular compartment and ensures the removal of cells that are not properly equipped to assume their function as well as those that have assumed function but are no longer required. In this Review we focus on the roles of CD95 (also known as FAS) and BCL-2-interacting mediator of cell death (BIM), two major regulators of apoptosis in T cell homeostasis, with a particular emphasis on their cooperation in the shutdown of T cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quality checkpoints and death during T cell development and function.
Figure 2: Extrinsic and intrinsic pathways leading to apoptosis.
Figure 3: The three phases of a T cell response to an acute infection.
Figure 4: Differential responses may be driven by signals of different strength through the T cell receptor.

Similar content being viewed by others

References

  1. Metcalf, D. Lineage commitment in the progeny of murine hematopoietic preprogenitor cells: influence of thrombopoietin and interleukin 5. Proc. Natl Acad. Sci. USA 95, 6408–6412 (1998).

    Article  CAS  Google Scholar 

  2. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  3. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 65, 233–243 (1991).

    Article  Google Scholar 

  4. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    Article  CAS  Google Scholar 

  5. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  CAS  Google Scholar 

  6. Wallach, D., Kovalenko, A. V., Varfolomeev, E. E. & Boldin, M. P. Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr. Opin. Immunol. 10, 279–288 (1998).

    Article  CAS  Google Scholar 

  7. Schneider, P. et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213 (1998).

    Article  CAS  Google Scholar 

  8. Tanaka, M., Itai, T., Adachi, M. & Nagata, S. Downregulation of Fas ligand by shedding. Nature Med. 4, 31–36 (1998).

    Article  CAS  Google Scholar 

  9. Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  CAS  Google Scholar 

  10. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  11. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95) - associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  12. Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  Google Scholar 

  13. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992). This paper identifies a mutation in CD95 as the cause of the lymphoproliferative disorder in Cd95lpr mice.

    Article  CAS  Google Scholar 

  14. Trambas, C. M. & Griffiths, G. M. Delivering the kiss of death. Nature Immunol. 4, 399–403 (2003).

    Article  CAS  Google Scholar 

  15. Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 14, 1040–1049 (2007).

    Article  CAS  Google Scholar 

  16. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  Google Scholar 

  17. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  Google Scholar 

  18. Kang, T. B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol. 173, 2976–2984 (2004).

    Article  CAS  Google Scholar 

  19. Newton, K., Harris, A. W., Bath, M. L., Smith, K. G. C. & Strasser, A. A dominant interfering mutant of FADD/Mort1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706–718 (1998).

    Article  CAS  Google Scholar 

  20. Walsh, C. M. et al. A role for FADD in T cell activation and development. Immunity 8, 439–449 (1998).

    Article  CAS  Google Scholar 

  21. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).

    Article  CAS  Google Scholar 

  22. Adams, J. M. & Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Cur. Opin. Immunol. 19, 488–496 (2007).

    Article  CAS  Google Scholar 

  23. Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157–164 (2008).

    Article  CAS  Google Scholar 

  24. van Delft, M. F. & Huang, D. C. S. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res. 16, 203–213 (2006).

    Article  CAS  Google Scholar 

  25. Giam, M., Huang, D. C. S. & Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene (in the press).

  26. Mérino, D. & Bouillet, P. The Bcl-2 family in autoimmune and degenerative disorders. Apoptosis 14, 570–583 (2009).

    Article  Google Scholar 

  27. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994). This paper shows that inactivating mutations in CD95L cause the generalized lymphoproliferative disease seen in Cd95gld mice.

    Article  CAS  Google Scholar 

  28. Cohen, P. L. & Eisenberg, R. A. The lpr and gld genes in systemic autoimmunity: life and death in the Fas lane. Immunol. Today 13, 427–428 (1993).

    Article  Google Scholar 

  29. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  Google Scholar 

  30. Renno, T., Hahne, M. & MacDonald, H. R. Proliferation is a prerequisite for bacterial superantigen-induced T cell apoptosis in vivo. J. Exp. Med. 181, 2283–2287 (1995).

    Article  CAS  Google Scholar 

  31. Renno, T., Hahne, M., Tschopp, J. & MacDonald, H. R. Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B200 and upregulate Fas and Fas ligand. J. Exp. Med. 183, 431–437 (1996).

    Article  CAS  Google Scholar 

  32. Renno, T. et al. Expression of B220 on activated T cell blasts precedes apoptosis. Eur. J. Immunol. 28, 540–547 (1998).

    Article  CAS  Google Scholar 

  33. Russell, J. H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide. Proc. Natl Acad. Sci. USA 90, 4409–4413 (1993).

    Article  CAS  Google Scholar 

  34. Alderson, M. R. et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181, 71–77 (1995).

    Article  CAS  Google Scholar 

  35. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    Article  CAS  Google Scholar 

  36. Dhein, J., Walczak, H., Baumler, C., Debatin, K.-M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    Article  CAS  Google Scholar 

  37. Green, D. R., Droin, N. & Pinkoski, M. Activation-induced cell death in T cells. Immunol. Rev. 193, 70–81 (2003).

    Article  CAS  Google Scholar 

  38. Lohman, B. L., Razvi, E. S. & Welsh, R. M. T-lymphocyte downregulation after acute viral infection is not dependent on CD95 (Fas) receptor–ligand interactions. J. Virol. 70, 8199–8203 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zimmermann, C., Rawiel, M., Blaser, C., Kaufmann, M. & Pircher, H. Homeostatic regulation of CD8+ T cells after antigen challenge in the absence of Fas (CD95). Eur. J. Immunol. 26, 2903–2910 (1996).

    Article  CAS  Google Scholar 

  40. Mogil, R. J. et al. Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. Int. Immunol. 7, 1451–1458 (1995).

    Article  CAS  Google Scholar 

  41. Bonfoco, E. et al. Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9, 711–720 (1998).

    Article  CAS  Google Scholar 

  42. Hildeman, D. A. et al. Activated T cell death in vivo mediated by pro-apoptotic Bcl-2 family member, Bim. Immunity 16, 759–767 (2002).

    Article  CAS  Google Scholar 

  43. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    Article  CAS  Google Scholar 

  44. Singer, G. G. & Abbas, A. K. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371 (1994).

    Article  CAS  Google Scholar 

  45. Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrancois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24, 439–449 (2006).

    Article  CAS  Google Scholar 

  46. Turner, D. L., Cauley, L. S., Khanna, K. M. & Lefrancois, L. Persistent antigen presentation after acute vesicular stomatitis virus infection. J. Virol. 81, 2039–2046 (2007).

    Article  CAS  Google Scholar 

  47. Hughes, P., Bouillet, P. & Strasser, A. Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases. Curr. Dir. Autoimmun. 9, 74–94 (2006).

    CAS  PubMed  Google Scholar 

  48. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999). This paper describes the physiological role of BIM and its association with autoimmune disease.

    Article  CAS  Google Scholar 

  49. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  Google Scholar 

  50. von Boehmer, H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu. Rev. Immunol. 8, 531–556 (1990).

    Article  CAS  Google Scholar 

  51. Hubner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol. Cell 30, 415–425 (2008).

    Article  CAS  Google Scholar 

  52. Pellegrini, M., Belz, G., Bouillet, P. & Strasser, A. Shut down of an acute T cell immune response to viral infection is mediated by the pro-apoptotic Bcl-2 homology 3-only protein Bim. Proc. Natl Acad. Sci. USA 100, 14175–14180 (2003).

    Article  CAS  Google Scholar 

  53. Vella, A. T., Dow, S., Potter, T. A., Kappler, J. & Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 3810–3815 (1998).

    Article  CAS  Google Scholar 

  54. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    Article  CAS  Google Scholar 

  55. Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  Google Scholar 

  56. Erlacher, M. et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J. Exp. Med. 203, 2939–2951 (2006).

    Article  CAS  Google Scholar 

  57. Strasser, A., Harris, A. W., Huang, D. C. S., Krammer, P. H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

    Article  CAS  Google Scholar 

  58. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol. 5, 809–817 (2004).

    Article  CAS  Google Scholar 

  59. Reap, E. A. et al. bcl-2 transgenic Lpr mice show profound enhancement of lymphadenopathy. J. Immunol. 155, 5455–5462 (1995).

    CAS  PubMed  Google Scholar 

  60. Hughes, P. D. et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 28, 197–205 (2008).

    Article  CAS  Google Scholar 

  61. Weant, A. E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28, 218–230 (2008).

    Article  CAS  Google Scholar 

  62. Hutcheson, J. et al. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28, 206–217 (2008). Together with references 60 and 61, this work shows that CD95 and BIM cooperate in the contraction of T cell immune responses.

    Article  CAS  Google Scholar 

  63. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  Google Scholar 

  64. Dowdell, K. C. et al. Valproic acid (VPA), a histone-deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas-deficient MRL/lpr−/− murine model of lymphoproliferative syndrome (ALPS). Exp. Hematol. 37, 487–494 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Strasser, J. M. Adams, S. Cory and all our close colleagues for fruitful discussions and support. We apologize to our colleagues whose work has been referred to only indirectly through reviews. Our work is supported by grants and fellowships from The National Health and Medical Research Council of Australia, the Leukemia and Lymphoma Society, the Australian Research Council, the Cancer Council Victoria (Australia) and the Charles and Sylvia Viertel Charitable foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bouillet.

Glossary

Death-inducing signalling complex

A caspase 8 activation platform downstream of CD95.

Apoptosome

A protein complex that activates initiator caspase 9 and is composed of apoptotic protease-activating factor 1, cytochrome c and ATP. Its formation is triggered by the release of cytochrome c from the mitochondria.

Autoimmune lymphoproliferative syndrome

A form of lymphoproliferative disorder that is often the result of mutations of the death receptor CD95 or its ligand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillet, P., O'Reilly, L. CD95, BIM and T cell homeostasis. Nat Rev Immunol 9, 514–519 (2009). https://doi.org/10.1038/nri2570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing