Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The production and regulation of IgE by the immune system

Key Points

  • The production of IgE and its clearance from the blood are tightly regulated, which results in transient IgE antibody responses and the maintenance of low steady-state levels of IgE.

  • IgE can be generated by a direct class-switch recombination pathway from Sμ to Sε, by a sequential class-switch pathway from Sμ to Sγ1 followed by Sε, as well as by a recently described alternative sequential class-switch pathway from Sγ1 to Sε, which then joins to Sμ. Additional work is needed to better understand the contribution of each class-switch pathway to IgE production in health and disease.

  • Early IgE antibody responses arise from extrafollicular sources, whereas later IgE responses are derived from germinal centres. IgE germinal centre responses are transient, which may limit IgE production.

  • IgE plasma cells that are derived from germinal centres are predisposed to be short-lived in contrast to IgG1 plasma cells that are derived from germinal centres, and are primarily long-lived.

  • IgE memory responses can arise from both IgE memory B cells and IgG1 memory B cells, but the contribution of each memory B cell subset to total IgE memory responses remains to be clarified.

  • The high-affinity Fc receptor for IgE (FcεRI) on dendritic cells and macrophages, but not on mast cells or basophils, contributes to the clearance of serum IgE. By contrast, the low-affinity Fc receptor for IgE (FcεRII; also known as CD23) on B cells does not contribute to the clearance of serum IgE, but modulates total serum IgE levels by providing a sink that binds a substantial portion of the total IgE pool.

  • A better understanding of IgE biology may lead to new approaches to treat IgE-driven allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.

Abstract

IgE not only provides protective immunity against helminth parasites but can also mediate the type I hypersensitivity reactions that contribute to the pathogenesis of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. Despite the importance of IgE in immune biology and allergic pathogenesis, the cells and the pathways that produce and regulate IgE are poorly understood. In this Review, we summarize recent advances in our understanding of the production and the regulation of IgE in vivo, as revealed by studies in mice, and we discuss how these findings compare to what is known about human IgE biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IgE and its receptors.
Figure 2: Direct, sequential and alternative sequential IgE class-switch recombination.
Figure 3: Model for in vivo IgE production and surveillance.

Similar content being viewed by others

References

  1. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nature Rev. Immunol. 8, 205–217 (2008).

    Article  CAS  Google Scholar 

  2. Gould, H. J. et al. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 21, 579–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Dullaers, M. et al. The who, where, and when of IgE in allergic airway disease. J. Allergy Clin. Immunol. 129, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Abadie, A. & Prouvost-Danon, A. Specific and total IgE responses to antigenic stimuli in Brown-Norway, Lewis and Sprague-Dawley rats. Immunology 39, 561–569 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karlsson, T., Ellerson, J. R., Haig, D. M., Jarrett, E. E. & Bennich, H. A radioimmunoassay for evaluation of the IgE and IgG antibody responses in the rat. Scand. J. Immunol. 9, 229–238 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Luger, E. et al. Somatic diversity of the immunoglobulin repertoire is controlled in an isotype-specific manner. Eur. J. Immunol. 31, 2319–2330 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mota, I. Biological characterization of mouse 'early' antibodies. Immunology 12, 343–348 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Revoltella, R. & Ovary, Z. Reaginic antibody production in different mouse strains. Immunology 17, 45–54 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Talay, O. et al. IgE+ memory B cells and plasma cells generated through a germinal-center pathway. Nature Immunol. 13, 396–404 (2012). Using M1 prime GFP knock-in IgE reporter mice, this paper describes a germinal centre pathway that results in the generation of IgE plasma cells and IgE memory B cells.

    Article  CAS  Google Scholar 

  10. Yang, Z., Sullivan, B. M. & Allen, C. D. Fluorescent in vivo detection reveals that IgE+ B cells are restrained by an intrinsic cell fate predisposition. Immunity 36, 857–872 (2012). Using Verigem IgE reporter mice, this paper describes a germinal centre pathway and a predisposition for IgE germinal centre B cells to differentiate into short-lived IgE plasma cells.

    Article  CAS  PubMed  Google Scholar 

  11. Acharya, M. et al. CD23/FcεRII: molecular multi-tasking. Clin. Exp. Immunol. 162, 12–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraft, S. & Kinet, J. P. New developments in FcεRI regulation, function and inhibition. Nature Rev. Immunol. 7, 365–378 (2007).

    Article  CAS  Google Scholar 

  13. Gatto, D. & Brink, R. The germinal center reaction. J. Allergy Clin. Immunol. 126, 898–909 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nature Immunol. 11, 681–688 (2010).

    Article  CAS  Google Scholar 

  15. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nature Rev. Immunol. 12, 24–34 (2012).

    Article  CAS  Google Scholar 

  16. Oracki, S. A., Walker, J. A., Hibbs, M. L., Corcoran, L. M. & Tarlinton, D. M. Plasma cell development and survival. Immunol. Rev. 237, 140–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Shlomchik, M. J. & Weisel, F. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247, 52–63 (2012).

    Article  PubMed  Google Scholar 

  18. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Brightbill, H. D. et al. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J. Clin. Invest. 120, 2218–2229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Talay, O. et al. Addendum: IgE+ memory B cells and plasma cells generated through a germinal-center pathway. Nature Immunol. 14, 1302–1304 (2013).

    Article  CAS  Google Scholar 

  21. He, J. S. et al. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response. J. Exp. Med. 210, 2755–2771 (2013). Using C ε GFP IgE reporter mice, this paper reports that IgE germinal centre B cells are predisposed to apoptosis and that IgE plasma cells and IgE memory responses primarily arise from sequential class switching through a IgG1 B cell stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nature Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  Google Scholar 

  23. Geha, R. S., Jabara, H. H. & Brodeur, S. R. The regulation of immunoglobulin E class-switch recombination. Nature Rev. Immunol. 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  24. Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Jung, S., Siebenkotten, G. & Radbruch, A. Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J. Exp. Med. 179, 2023–2026 (1994). This paper reports that sequential class switching through IgG1 is not required for IgE production in mice in which IgG1 class-switch recombination is abolished by deletion of the Iγ1 regulatory region.

    Article  CAS  PubMed  Google Scholar 

  26. Misaghi, S. et al. Increased targeting of donor switch region and IgE in Sγ1-deficient B cells. J. Immunol. 185, 166–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Dunnick, W., Hertz, G. Z., Scappino, L. & Gritzmacher, C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21, 365–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erazo, A. et al. Unique maturation program of the IgE response in vivo. Immunity 26, 191–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mandler, R., Finkelman, F. D., Levine, A. D. & Snapper, C. M. IL-4 induction of IgE class switching by lipopolysaccharide-activated murine B cells occurs predominantly through sequential switching. J. Immunol. 150, 407–418 (1993).

    CAS  PubMed  Google Scholar 

  30. Misaghi, S. et al. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proc. Natl Acad. Sci. USA 110, 15770–15775 (2013). This paper reports the generation of polyclonal hyper-IgE mice by replacing the Sε region with Sμ, and reveals multiple mechanisms by which switch regions affect class-switch recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siebenkotten, G., Esser, C., Wabl, M. & Radbruch, A. The murine IgG1/IgE class switch program. Eur. J. Immunol. 22, 1827–1834 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Sudowe, S., Rademaekers, A. & Kolsch, E. Antigen dose-dependent predominance of either direct or sequential switch in IgE antibody responses. Immunology 91, 464–472 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wesemann, D. R. et al. Immature B cells preferentially switch to IgE with increased direct Sμ to Sε recombination. J. Exp. Med. 208, 2733–2746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong, H. Z., Dolpady, J., Wabl, M., de Lafaille, M. A. C. & Lafaille, J. J. Sequential class switching is required for the generation of high affinity IgE antibodies. J. Exp. Med. 209, 353–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshida, K. et al. Immunoglobulin switch circular DNA in the mouse infected with Nippostrongylus brasiliensis: evidence for successive class switching from μ to ε via γ 1. Proc. Natl Acad. Sci. USA 87, 7829–7833 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, T. et al. Downstream class switching leads to IgE antibody production by B lymphocytes lacking IgM switch regions. Proc. Natl Acad. Sci. USA 107, 3040–3045 (2010). This paper reports a novel pathway called alternative sequential IgE class-switch recombination that occurs in S μ -knockout B cells, raising the possibility that sequential class-switch recombination to IgE via IgG1 can occur entirely at the DNA level without going through an IgG1 B cell stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zarrin, A. A., Tian, M., Wang, J., Borjeson, T. & Alt, F. W. Influence of switch region length on immunoglobulin class switch recombination. Proc. Natl Acad. Sci. USA 102, 2466–2470 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zarrin, A. A. et al. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 315, 377–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Hackney, J. A. et al. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv. Immunol. 101, 163–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Reina- San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M. C. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1−/− B cells. Eur. J. Immunol. 37, 235–239 (2007).

    Article  CAS  Google Scholar 

  41. Kumar, S. et al. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny. Genes Dev. 27, 2439–2444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jabara, H. H., Loh, R., Ramesh, N., Vercelli, D. & Geha, R. S. Sequential switching from μ to ε via γ4 in human B cells stimulated with IL-4 and hydrocortisone. J. Immunol. 151, 4528–4533 (1993).

    CAS  PubMed  Google Scholar 

  43. Mills, F. C., Mitchell, M. P., Harindranath, N. & Max, E. E. Human Ig Sγ regions and their participation in sequential switching to IgE. J. Immunol. 155, 3021–3036 (1995).

    CAS  PubMed  Google Scholar 

  44. Baskin, B., Islam, K. B., Evengard, B., Emtestam, L. & Smith, C. I. Direct and sequential switching from mu to epsilon in patients with Schistosoma mansoni infection and atopic dermatitis. Eur. J. Immunol. 27, 130–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Shapira, S. K. et al. Deletional switch recombination occurs in interleukin-4-induced isotype switching to IgE expression by human B cells. Proc. Natl Acad. Sci. USA 88, 7528–7532 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van der Stoep, N., Korver, W. & Logtenberg, T. In vivo and in vitro IgE isotype switching in human B lymphocytes: evidence for a predominantly direct IgM to IgE class switch program. Eur. J. Immunol. 24, 1307–1311 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Achatz, G., Nitschke, L. & Lamers, M. C. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276, 409–411 (1997). This paper reports that primary and memory IgE responses are abolished in mice that lack membrane IgE and are reduced in mice in which the cytoplasmic tail of membrane IgE is replaced with a short Lys-Val-Lys sequence, which indicates that IgE production requires IgE BCR signalling.

    Article  CAS  PubMed  Google Scholar 

  48. Achatz-Straussberger, G. et al. Migration of antibody secreting cells towards CXCL12 depends on the isotype that forms the BCR. Eur. J. Immunol. 38, 3167–3177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karnowski, A., Achatz-Straussberger, G., Klockenbusch, C., Achatz, G. & Lamers, M. C. Inefficient processing of mRNA for the membrane form of IgE is a genetic mechanism to limit recruitment of IgE-secreting cells. Eur. J. Immunol. 36, 1917–1925 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Katona, I. M. et al. Induction of an IgE response in mice by Nippostrongylus brasiliensis: characterization of lymphoid cells with intracytoplasmic or surface IgE. J. Immunol. 130, 350–356 (1983).

    CAS  PubMed  Google Scholar 

  51. Kelly, K. A. & Butch, A. W. Antigen-specific immunoglobulin E+ B cells are preferentially localized within germinal centres. Immunology 120, 345–353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lafaille, J. J., Xiong, H. & Curotto de Lafaille, M. A. On the differentiation of mouse IgE+ cells. Nature Immunol. 13, 623 (2012).

    Article  CAS  Google Scholar 

  53. Talay, O. et al. Reply to “On the differentiation of mouse IgE+ cells”. Nature Immunol. 13, 623–624 (2012).

    Article  CAS  Google Scholar 

  54. McCoy, K. D. et al. Natural IgE production in the absence of MHC Class II cognate help. Immunity 24, 329–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and TH2-type inflammation. Nature Genet. 16, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Slavin, R. G. et al. Localization of IgE to lung germinal lymphoid follicles in a patient with allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol. 90, 1006–1008 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Gould, H. J., Takhar, P., Harries, H. E., Durham, S. R. & Corrigan, C. J. Germinal-centre reactions in allergic inflammation. Trends Immunol. 27, 446–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Holt, P. G., Sedgwick, J. D., O'Leary, C., Krska, K. & Leivers, S. Long-lived IgE- and IgG-secreting cells in rodents manifesting persistent antibody responses. Cell. Immunol. 89, 281–289 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. Luger, E. O. et al. Induction of long-lived allergen-specific plasma cells by mucosal allergen challenge. J. Allergy Clin. Immunol. 124, 819–826. e4 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Brinkmann, V. & Heusser, C. H. T cell-dependent differentiation of human B cells into IgM, IgG, IgA, or IgE plasma cells: high rate of antibody production by IgE plasma cells, but limited clonal expansion of IgE precursors. Cell. Immunol. 152, 323–332 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Dhanjal, M. K. et al. The detection of IgE-secreting cells in the peripheral blood of patients with atopic dermatitis. J. Allergy Clin. Immunol. 89, 895–904 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Horst, A. et al. Detection and characterization of plasma cells in peripheral blood: correlation of IgE+ plasma cell frequency with IgE serum titre. Clin. Exp. Immunol. 130, 370–378 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. King, C. L. et al. Frequency analysis of IgE-secreting B lymphocytes in persons with normal or elevated serum IgE levels. J. Immunol. 146, 1478–1483 (1991).

    CAS  PubMed  Google Scholar 

  64. Grammer, L. C., Zeiss, C. R., Levitz, D., Roberts, M. & Pruzansky, J. J. Variation with season and with polymerized ragweed immunotherapy in IgE against ragweed antigen E in plasma and eluted from the basophil surface in patients with ragweed pollenosis. J. Clin. Immunol. 1, 222–227 (1981).

    Article  Google Scholar 

  65. Johansson, S. G., Bennich, H., Berg, T. & Hogman, C. Some factors influencing the serum IgE levels in atopic diseases. Clin. Exp. Immunol. 6, 43–47 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yunginger, J. W. & Gleich, G. J. Seasonal changes in IgE antibodies and their relationship to IgG antibodies during immunotherapy for ragweed hay fever. J. Clin. Invest. 52, 1268–1275 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitre, E. & Nutman, T. B. IgE memory: persistence of antigen-specific IgE responses years after treatment of human filarial infections. J. Allergy Clin. Immunol. 117, 939–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Bellou, A., Kanny, G., Fremont, S. & Moneret-Vautrin, D. A. Transfer of atopy following bone marrow transplantation. Ann. Allergy Asthma Immunol. 78, 513–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Hallstrand, T. S. et al. Long-term acquisition of allergen-specific IgE and asthma following allogeneic bone marrow transplantation from allergic donors. Blood 104, 3086–3090 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Le Gros, G. et al. The development of IgE+ memory B cells following primary IgE immune responses. Eur. J. Immunol. 26, 3042–3047 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Takahama, H., Ovary, Z. & Furusawa, S. Murine IgG1 and IgE memory B cells. Cell. Immunol. 157, 369–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Donohoe, P. J. et al. IgE+ cells in the peripheral blood of atopic, nonatopic, and bee venom-hypersensitive individuals exhibit the phenotype of highly differentiated B cells. J. Allergy Clin. Immunol. 95, 587–596 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Stein, L. D., Chan, M. A., Hibi, T. & Dosch, H. M. Epstein–Barr virus-induced IgE production in limiting dilution cultures of normal human B cells. Eur. J. Immunol. 16, 1167–1170 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Steinberger, P. et al. Allergen-specific IgE production of committed B cells from allergic patients in vitro. J. Allergy Clin. Immunol. 96, 209–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Rogosch, T. et al. Plasma cells and nonplasma B cells express differing IgE repertoires in allergic sensitization. J. Immunol. 184, 4947–4954 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Dahlke, I., Nott, D. J., Ruhno, J., Sewell, W. A. & Collins, A. M. Antigen selection in the IgE response of allergic and nonallergic individuals. J. Allergy Clin. Immunol. 117, 1477–1483 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kerzel, S., Rogosch, T., Struecker, B., Maier, R. F. & Zemlin, M. IgE transcripts in the circulation of allergic children reflect a classical antigen-driven B cell response and not a superantigen-like activation. J. Immunol. 185, 2253–2260 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Lim, A. et al. The IgE repertoire in PBMCs of atopic patients is characterized by individual rearrangements without variable region of the heavy immunoglobulin chain bias. J. Allergy Clin. Immunol. 120, 696–706 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Snow, R. E., Chapman, C. J., Holgate, S. T. & Stevenson, F. K. Clonally related IgE and IgG4 transcripts in blood lymphocytes of patients with asthma reveal differing patterns of somatic mutation. Eur. J. Immunol. 28, 3354–3361 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. van der Stoep, N., van der Linden, J. & Logtenberg, T. Molecular evolution of the human immunoglobulin E response: high incidence of shared mutations and clonal relatedness among ε VH5 transcripts from three unrelated patients with atopic dermatitis. J. Exp. Med. 177, 99–107 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Y. et al. IgE sequences in individuals living in an area of endemic parasitism show little mutational evidence of antigen selection. Scand. J. Immunol. 73, 496–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Lund, G. et al. Antibody repertoire complexity and effector cell biology determined by assays for IgE-mediated basophil and T-cell activation. J. Immunol. Methods 383, 4–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Handlogten, M. W., Kiziltepe, T., Serezani, A. P., Kaplan, M. H. & Bilgicer, B. Inhibition of weak-affinity epitope-IgE interactions prevents mast cell degranulation. Nature Chem. Biol. 9, 789–795 (2013).

    Article  CAS  Google Scholar 

  84. Corry, D. B. & Kheradmand, F. Induction and regulation of the IgE response. Nature 402, B18–B23 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Hibbert, R. G. et al. The structure of human CD23 and its interactions with IgE and CD21. J. Exp. Med. 202, 751–760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iio, A., Waldmann, T. A. & Strober, W. Metabolic study of human IgE: evidence for an extravascular catabolic pathway. J. Immunol. 120, 1696–1701 (1978).

    CAS  PubMed  Google Scholar 

  87. Cheng, L. E., Wang, Z. E. & Locksley, R. M. Murine B cells regulate serum IgE levels in a CD23-dependent manner. J. Immunol. 185, 5040–5047 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J. P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor -chain gene. Cell 75, 969–976 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Stief, A. et al. Mice deficient in CD23 reveal its modulatory role in IgE production but no role in T and B cell development. J. Immunol. 152, 3378–3390 (1994).

    CAS  PubMed  Google Scholar 

  90. Greer, A. M. et al. Serum IgE clearance is facilitated by human FcεRI internalization. J. Clin. Invest. 124, 1187–1198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hirano, M. et al. IgEb immune complexes activate macrophages through FcγRIV binding. Nature Immunol. 8, 762–771 (2007).

    Article  CAS  Google Scholar 

  92. Mancardi, D. A. et al. FcγRIV is a mouse IgE receptor that resembles macrophage FcεRI in humans and promotes IgE-induced lung inflammation. J. Clin. Invest. 118, 3738–3750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheng, L. E., Hartmann, K., Roers, A., Krummel, M. F. & Locksley, R. M. Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E. Immunity 38, 166–175 (2013). This paper reports that perivascular mast cells in the skin sample blood IgE by extending cell processes across the vasculature, which indicates that IgE uptake by tissue-resident mast cells is an active process and is not due to passive antibody diffusion into the tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iwasato, T., Shimizu, A., Honjo, T. & Yamagishi, H. Circular DNA is excised by immunoglobulin class switch recombination. Cell 62, 143–149 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Matsuoka, M., Yoshida, K., Maeda, T., Usuda, S. & Sakano, H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62, 135–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. von Schwedler, U., Jack, H. M. & Wabl, M. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345, 452–456 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Stavnezer-Nordgren, J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yancopoulos, G. D. et al. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lawren C. Wu or Ali A. Zarrin.

Ethics declarations

Competing interests

L.C.W. and A.A.Z. are employed by Genentech and hold equity in the Roche group.

Supplementary information

Supplementary information S1 (figure)

Human IgE class switch recombination (PDF 627 kb)

PowerPoint slides

Glossary

Type I hypersensitivity

Immunological hypersensitivity reactions have been classified into four types depending on the antigen-recognizing molecule involved. Type I hypersensitivity is defined as an IgE-mediated hypersensitivity reaction that can manifest as either systemic or localized anaphylaxis.

Anaphylaxis

A severe and rapid allergic reaction triggered by the activation of FcεRI in sensitized individuals. Systemic anaphylaxis is the most severe type, showing shock-like symptoms and usually leading to death within minutes if left untreated. Localized anaphylaxis is limited to a specific target tissue or organ, and consists of an early-phase response, such as a wheal and flare reaction in the skin, that may lead to a late-phase response characterized by a more persistent influx of immune cells.

Eicosanoid

A fatty acid derivative that is mainly derived from arachidonic acid precursors and has a wide variety of biological activities. There are four main classes of eicosanoids — prostaglandins, prostacyclins, thromboxanes and leukotrienes — which are derived from the activities of cyclooxygenases and lipoxygenases on membrane-associated fatty acid precursors.

Germinal centre

A highly specialized and dynamic microenvironment that gives rise to secondary B cell follicles during an immune response. It is the main site of B cell maturation, leading to the generation of memory B cells and plasma cells that produce high-affinity antibodies.

Class-switch recombination

DNA rearrangement of the V(D)J gene from IgM to any of the IgG, IgA and IgE constant region genes at the heavy chain locus. Recombination occurs in repetitive sequences of DNA that are located upstream of each constant gene.

Affinity maturation

A process by which the mutation of antibody variable region genes followed by the selection of higher-affinity variants in the germinal centre leads to an increase in average antibody affinity as an immune response progresses. The selection is thought to be a competitive process in which B cells compete with free antibodies to capture decreasing amounts of antigens.

Polyadenylation sites

Sequences required for the cleavage of primary RNA transcripts that are produced by RNA polymerase II. As a consequence of such cleavage, the 5′ cut-off product becomes polyadenylated, whereas the 3′ product undergoes rapid degradation that induces polymerase II release from the DNA and hence leads to transcriptional termination.

Nested PCR

A technique for improving the sensitivity and the specificity of PCR by the sequential use of two sets of oligonucleotide primers in two rounds of PCR. The second pair (known as nested primers) is located in the segment of DNA that is amplified by the first pair.

Episome

Extrachromosomal circular DNA in a cell nucleus.

Complementarity-determining regions

(CDRs). The most variable parts of immunoglobulins and T cell receptors. These regions form loops that make contact with specific ligands. There are three such regions (CDR1, CDR2 and CDR3) in each variable domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Zarrin, A. The production and regulation of IgE by the immune system. Nat Rev Immunol 14, 247–259 (2014). https://doi.org/10.1038/nri3632

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing