Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Making the case for chromatin profiling: a new tool to investigate the immune-regulatory landscape

Abstract

Recent technological advances have enabled researchers to accurately and efficiently assay the chromatin dynamics of scarce cell populations. In this Opinion article, we advocate the application of these technologies to central questions in immunology. Unlike changes to other molecular structures in the cell, chromatin features can reveal the past (developmental history), present (current activity) and future (potential response to challenges) of a given immune cell type; chromatin profiling is therefore an important new tool for studying the immune-regulatory networks of health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative chromatin profiling: from immune cells to the regulatory landscape.
Figure 2: Multiple layers of chromatin regulation in immune cells.
Figure 3: Association of human chromatin data and susceptibility to immune disease.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Heng, T. S., Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, C. C. & Lanier, L. L. Beyond the transcriptome: completion of act one of the Immunological Genome Project. Curr. Opin. Immunol. 25, 593–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Shay, T. & Kang, J. Immunological Genome Project and systems immunology. Trends Immunol. 34, 602–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Schones, D. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Boyle, A. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bauer, D. E. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 160, 351–352 (2014).

    Article  CAS  Google Scholar 

  14. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buenrostro, J., Giresi, P., Zaba, L., Chang, H. & Greenleaf, W. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thurman, R. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenleaf, W. J. Assaying the epigenome in limited numbers of cells. Methods 72, 51–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Cedar, H. & Bergman, Y. Epigenetics of haematopoietic cell development. Nat. Rev. Immunol. 11, 478–488 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Broske, A.-M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giresi, P., Kim, J., McDaniell, R., Iyer, V. & Lieb, J. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heintzman, N. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Creyghton, M. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanyal, A., Lajoie, B., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kieffer-Kwon, K.-R. et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155, 1507–1520 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, B. E., Mikkelsen, T. S., Xie, X. & Kamal, M. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Odink, K. et al. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330, 80–82 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Lam, M. T. Y. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32, 714–725 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Monticelli, S. & Natoli, G. Short-term memory of danger signals and environmental stimuli in immune cells. Nat. Immunol. 14, 777–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Netea, M. G., Quintin, J. & van der Meer, J. W. M. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Foster, S., Hargreaves, D. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 1–13 (2014).

    Article  CAS  Google Scholar 

  44. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol. 14, 1007–1013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yokoyama, W. M., Sojka, D. K., Peng, H. & Tian, Z. Tissue-resident natural killer cells. Cold Spring Harb. Symp. Quant. Biol. 78, 149–156 (2013).

    Article  PubMed  Google Scholar 

  47. Glasmacher, E. et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1–IRF complexes. Science 338, 975–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boyle, A. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cirillo, L. & Zaret, K. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Ostuni, R. & Natoli, G. Lineages, cell types and functional states: a genomic view. Curr. Opin. Cell Biol. 25, 759–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Winter, D. R. & Amit, I. The role of chromatin dynamics in immune cell development. Immunol. Rev. 261, 9–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Vilagos, B. et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 209, 775–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat. Biotechnol. 30, 224–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Martens, J. H. A. & Stunnenberg, H. G. BLUEPRINT: mapping human blood cell epigenomes. Haematologica 98, 1487–1489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pulendran, B. Systems vaccinology: Probing humanity's diverse immune systems with vaccines. Proc. Natl Acad. Sci. USA 111, 12300–12306 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ballester, B. et al. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. eLife 3, e02626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosengren Pielberg, G. et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 40, 1004–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Degner, J. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mikkelsen, T. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suzuki, T. et al. Pulmonary macrophage transplantation therapy. Nature 514, 450–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Richmond, T. & Davey, C. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Amendola, M. & Van Steensel, B. Mechanisms and dynamics of nuclear lamina–genome interactions. Curr. Opin. Cell Biol. 28, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Grewal, S. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Dixon, J. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rao, Suhas, S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Brodsky for drafting the artwork. Research in the laboratory of I.A. is supported by the European Research Council (309788) and the Israeli Science Foundation (712163), The Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine and the Center for Excellence in Genome Science from the National Human Genome Research Institute (NHGRI; 1P50HG006193). Research in the laboratory of S.J. is supported by the Israeli Science Foundation (887/11), the European Research Council (340345) and the Deutsche Forschungsgemeinschaft (FOR1336). D.R.W. is grateful to the Azrieli Foundation for the Azrieli Fellowship award and for support from the European Molecular Biology Organization (EMBO; ALT766-2014) and the European Commission FP7 (Marie Curie Actions, EMBOCOFUND2012, GA-2012-600394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deborah R. Winter or Ido Amit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURHER INFORMATION

Blueprint consortium

ENCODE

ImmGen

PowerPoint slides

Glossary

Assay for transposase-accessible chromatin

(ATAC). A method for identifying regions of open chromatin by using Tn5 transposase to insert paired sequencing adaptors into accessible chromatin.

Chromatin

The 3D complex of DNA and proteins within the nucleus. Features of chromatin (including localization, structure, interacting proteins, accessibility and modifications) regulate cell-type-specific gene expression.

Chromatin immunoprecipitation

(ChIP). A method for identifying genomic regions that associate with a particular protein, including specifically modified histones, through immunoprecipitation of the crosslinked DNA fragments.

Chromatin interaction analysis using paired-end tag sequencing

(ChIA-PET). A method for identifying pairs of regions associated with a particular protein by combining chromatin immunoprecipitation with the isolation of interacting DNA fragments.

Cis-acting elements

Functional regulatory elements (such as enhancers) within the genome that regulate the transcription of genes.

DNA methylation

The addition of a methyl group to a nucleic acid in the genome, typically to cytosine within a CpG pair.

DNase hypersensitivity assay

A method that relies on the preference of the enzyme DNaseI to digest unbound DNA to identify regions of open chromatin.

Enhancers

Distal regulatory elements that may function in combination with promoters or other enhancers to influence the transcription of one or more genes through the binding of transcription factors.

Epigenome

Modifications to the genome that do not change the DNA sequence, including DNA methylation, histone modifications and rearrangements of chromatin structure.

Expression quantitative trait loci

(eQTLs). Genomic loci that correlate with changes in gene expression analogously with the relationship between quantitative trait loci and phenotype.

Formaldehyde-assisted isolation of regulatory elements

(FAIRE). A method for identifying regions of open chromatin by isolating DNA fragments that are not bound to DNA after crosslinking.

Genome-wide association study

(GWAS). A statistical analysis comparing the occurrence of multiple common genetic variants (usually single-nucleotide polymorphisms) with a certain outcome (a phenotype or disease) to identify causal variants.

Hi-C and 5C

High-throughput adaptations of the chromosome conformation capture (3C) method that isolates DNA fragments interacting with each other. 5C searches for interactions between many loci, whereas Hi-C searches for all possible interactions in the genome.

Pioneer transcription factors

Sequence-specific DNA-binding proteins that target closed chromatin sites and recruit chromatin remodellers to transform these sites into an open chromatin state enabling the binding of additional transcription factors.

Promoter

A proximal regulatory element that is typically located upstream of the particular gene it regulates and includes the binding sites of general transcription factors such as RNA polymerase II.

Single-nucleotide polymorphisms

(SNPs). Mutations (substitutions, insertions or deletions) of an individual nucleotide in the genome sequence that are common in the population.

Trans-acting binding factors

Non-DNA molecules (typically referring to transcription factors or chromatin factors) that regulate the transcription of genes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, D., Jung, S. & Amit, I. Making the case for chromatin profiling: a new tool to investigate the immune-regulatory landscape. Nat Rev Immunol 15, 585–594 (2015). https://doi.org/10.1038/nri3884

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing