Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Redefinition of lymphoid progenitors

Abstract

Similarities between T and B lymphocytes might have led to the idea that these functionally distinct cells develop from a common lymphoid progenitor. However, investigations with a new clonal assay which allows for T-, B- and myeloid-lineage development indicate that commitment to T-cell and B-cell lineages occurs instead through myeloid/T and myeloid/B bipotential stages, respectively. These findings provide an opportunity to reconsider the ontogeny and phylogeny of T- and B-cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principles and procedure of the MLP assay.
Figure 2: Examples of flow-cytometric profiles of cells generated from single progenitors in the MLP assay.
Figure 3: Models of lineage commitment in haematopoiesis.

Similar content being viewed by others

References

  1. Gatti, R. A., Meuwissen, H. J. & Good, R. A. Mixed-leucocyte-culture response to leucocytes in severe combined immunodeficiency disease. Lancet 1, 235–236 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Lawton, A. R., Bockman, D. E. & Cooper, M. D. Treatment of autosomal recessive lymphopenic agammaglobulinemia by transplantation of matched allogeneic bone marrow. Am. J. Med. 54, 98–110 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Bosma, G. C., Custer, R. P. & Bosma, M. J. A severe combined immunodeficiency mutation in the mouse. Nature 301, 527–530 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Kawamoto, H., Ohmura, K. & Katsura, Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int. Immunol. 9, 1011–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, M. A. S. & Owen, J. J. T. Experimental studies on the development of the thymus. J. Exp. Med. 126, 715–725 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LeDouarin, N. M. & Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40 (1975).

    Article  CAS  Google Scholar 

  8. Abramson, S., Miller, R. G. & Phillip, R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145, 1567–1569 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of w/wv mice. Cell 42, 71–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Keller, G., Paige, C., Gilboa, E. & Wagner, E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, L., Antica, M., Johnson, G. R., Scollay, R. & Shortman, K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J. Exp. Med. 174, 1617–1627 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzaki, Y. et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hematopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1213 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Hao, Q.-L., et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cumano, A., Paige, C. J., Iscove, N. N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Delassus, S. & Cumano, A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity 4, 97–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Katsura, Y. & Kawamoto, H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int. Rev. Immunol. 20, 1–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kawamoto, H., Ohmura, K., Fujimoto, S. & Katsura, Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J. Immunol. 162, 2725–2731 (1999).

    CAS  PubMed  Google Scholar 

  23. Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Egawa, T. et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15, 323–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Traver, D. et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 98, 627–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Boyd, A. W. & Schrader, J. W. Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature 297, 691–693 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Klinken, S. P., Alexander, W. S. & Adams, J. M. Hemopoietic lineage switch: v-raf oncogene converts Eμ-myc transgenic B cells into macrophages. Cell 53, 857–867 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Borrello, M. A. & Phipps, R. P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 17, 471–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  31. Matutes, E. et al. Definition of acute biphenotypic leukemia. Haematologica 82, 64–66 (1997).

    CAS  PubMed  Google Scholar 

  32. Schmit, C. A. & Przybylski, G. K. What can we learn from leukemia as for the process of lineage commitment in hematopoiesis? Int. Rev. Immunol. 20, 107–115 (2001).

    Article  Google Scholar 

  33. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita, Y. et al. Syndecan-4 is expressed by B lineage lymphocytes and can transmit a signal for formation of dendritic processes. J. Immunol. 162, 5940–5948 (1999).

    CAS  PubMed  Google Scholar 

  36. Lacaud, G., Carlsson, L. & Keller, G. Identification of a fetal hematopoietic precursor with B cell, T cell and macrophage potential. Immunity 9, 827–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Singh, H. Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol. 8, 160–165 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Spain, L. M., Guerriero, A., Kunjibettu, S. & Scott, E. W. T cell development in PU.1-deficient mice. J. Immunol. 163, 2681–2687 (1999).

    CAS  PubMed  Google Scholar 

  39. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch 1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch 1. Immunity 15, 225–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pui, J. C. et al. Notch 1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Kawamoto, H., Ohmura, K. & Katsura, Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol. 161, 3799–3802 (1998).

    CAS  PubMed  Google Scholar 

  46. Smith, L. C. & Davidson, E. H. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol. Today 13, 356–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 190, 1617–1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853 (1993).

    CAS  PubMed  Google Scholar 

  50. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank H. Kawamoto for valuable discussion and W. T. V. Germeraad for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

FLK2

FLT3

Ikaros

IL-3

IL-7

IL-7R

Notch1

Pax5

PU.1

SCF

SDF-1

OMIM

SCID

Glossary

PRIMITIVE HAEMATOPOIESIS

The transient production of large, nucleated erythrocytes that express embryonic haemoglobin, which takes place in the yolk sac. Primitive megakaryocytopoiesis is also reported, but no other types of blood cells have ever been reported to be generated in primitive haematopoiesis.

DEFINITIVE HAEMATOPOIESIS

Haematopoiesis from pluripotent HSCs, where all types of blood cells are produced. HSCs are known to emerge first in the aorta–gonad–mesonephros region, whereas the main sites of definitive haematopoiesis in fetuses and adults are the liver and bone marrow, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsura, Y. Redefinition of lymphoid progenitors. Nat Rev Immunol 2, 127–132 (2002). https://doi.org/10.1038/nri721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing